Math, asked by Sam1707, 4 months ago

If :
 {4}^{x} - {4}^{x - 1} = 24
, then find the value of x.

Answers

Answered by Anonymous
66

Given:-

 {4}^{x} - {4}^{x - 1}  = 24

To Find:-

The Value of x

Solution:-

{4}^{x} - {4}^{x - 1} = 24

 =  >  {4}^{x}  -  {4}^{x} \times  {4}^{ - 1}  = 24

=>  {4}^{x}(1 -  {4}^{ - 1} ) = 24

 =  >  {4}^{x}(1 -  \frac{1}{4})  = 24

 =>  {4}^{x}( \frac{4}{4} -  \frac{1}{4}) = 24

 =  >  {4}^{x}( \frac{4 - 1}{3}) = 24

 => {4}^{x}( \frac{3}{4}) = 24

 =  >  {4}^{x} = 24 \times  \frac{4}{3}

 =  >  {4}^{x}  = 8 \times 4

 =  >  {4}^{x} = 32

 =  >  {2}^{2x} = 32

 =  >  {2}^{2x} =  {2}^{5}

 = > 2x = 5

x =  \frac{5}{2}

Answered by Anonymous
310

above one is correct...

Similar questions