Math, asked by saniya6811, 18 days ago

If
5x + 4y = 13 \: and \: 4x + 5y = 14 \: find \: x - y

Answers

Answered by Aurela
18

  \red{\large \underline{ \rm{Solution}}}

 \sf \: 5x + 4y = 13 \quad(1) \\ \sf \: 4x + 5y = 14  \quad(2)

By Substitution Method

Multiply eq (1) with 5 and eq (2) with 4

 \sf \quad 25x +  \cancel{20y} = 65 \quad(1) \\ ( - )\sf \: 16x + \cancel{ 20y} = 56  \quad(2) \\  \sf( - ) \quad( - ) \quad( - )

 \sf \: 9x = 9 \qquad \:  \underline{ \boxed{ \sf \: x = 1}}

Substitute the value of x in either of two eq let's take eq 2.

 \sf \: 4(1) + 5y  = 14  \\  \sf \: 5y = 14 - 4 \\  \sf \: 5y = 10 \qquad \:   \underline{\boxed {\sf { y = 2}}}

To Find

 \sf \: x - y = 1 - 2 = \red{  - 1}

Similar questions