Math, asked by shubham2151994, 6 months ago

if
7sin^{2}theta + 3cos^{2}theta = 4
then find sec theta+ cosec theta

Answers

Answered by mathdude500
1

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

Given :-

7 sin²θ + 3cos²θ = 4

To find :-

secθ + cosecθ

Solution :-

7 {sin}^{2} θ + 3 {cos}^{2} θ = 4 \\ 7 {sin}^{2} θ +  3(1 -  {sin}^{2} θ) = 4 \\ 7 {sin}^{2} θ +  3 - 3 {sin}^{2} θ = 4 \\ 4 {sin}^{2} θ = 4 - 3 \\ 4 {sin}^{2} θ = 1 \\  {sin}^{2} θ =  \frac{1}{4}  \\ sinθ =  \frac{1}{2}  \\  \large\bold\red{ =  >  \: θ = 30} \\ so \: secθ \:  + cosecθ \\  = sec30 + cosec30 \\  =   \frac{2}{ \sqrt{3} }  +  \frac{2}{1}  \\  =  \frac{2 + 2 \sqrt{3} }{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \\  =  \frac{2 \sqrt{3} + 6 }{3}

\huge \fcolorbox{black}{yellow}{♛Hope it helps U♛}

Answered by suman8615
2

Answer:

this answer is correct...................

Attachments:
Similar questions