Math, asked by rg9008753, 3 months ago

if
a = 1 \div 7 - 4 \sqrt{3}
b \: = 1  \div 7 + 4 \sqrt{3}
evaluate - a²+b²

Answers

Answered by Anonymous
2

Solution:-

Given

 \sf \to \: a =  \dfrac{1}{7 - 4 \sqrt{3} }  \:  \: and \:  \: b =  \dfrac{1}{7 + 4 \sqrt{3} }

To find the value of

  \to \:  \sf \:  {a}^{2}  +  {b}^{2}

Put the value on formula

 \sf \to \:  \bigg( \dfrac{1}{7 - 4 \sqrt{3} }  \bigg)^{2}  + \bigg( \dfrac{1}{7  + 4 \sqrt{3} }  \bigg)^{2}

 \sf \to \:  \dfrac{1}{(7 - 4 \sqrt{3} ) {}^{2} }  + \dfrac{1}{(7  +  4 \sqrt{3} ) {}^{2} }

 \sf \to \:  \dfrac{(7 + 4 \sqrt{3} ) {}^{2}  + (7 - 4 \sqrt{3} ) {}^{2} }{(7 - 4 \sqrt{3} ) {}^{2} (7 + 4 \sqrt{3} ) {}^{2} }

\sf \to \:  \dfrac{(7 + 4 \sqrt{3} ) {}^{2}  + (7 - 4 \sqrt{3} ) {}^{2}  }{(7 - 4 \sqrt{3} )  {}^{} \times (7 - 4 \sqrt{3}) {}^{}   \times  (7 + 4 \sqrt{3} ) {}^{}  \times (7  + 4 \sqrt{3} )}

Using this identity

 \sf \to \: (a - b) {}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ \sf \to \: (a  + b) {}^{2}  =  {a}^{2}  +  {b}^{2}   + 2ab

 \sf \to \:  \dfrac{(7) {}^{2} + (4 \sqrt{3} ) {}^{2}  - 2 \times 7 \times 4 \sqrt{3}   + (7) {}^{2} + (4 \sqrt{3} ) {}^{2}   +  2 \times 7 \times 4 \sqrt{3} }{(( {7})^{2} - (4 \sqrt{3} ) ^{2} )  \times (( {7})^{2} - (4 \sqrt{3} ) ^{2} ) }

 \sf \to \:  \dfrac{49 + 48 + 49 + 48}{(49 - 48)(49 - 48)}

 \sf \to \:  98 + 96

 \sf \to \: 194

Answer is 194

Answered by Anonymous
25

We have,

 a =  \frac{1}{7 - 4 \sqrt{3} }

On rationalising the denominator,

 \implies a = 7 + 4 \sqrt{3} .

Also,  b =  \frac{1}{7 + 4 \sqrt{3} } .

Similarly,

 \implies b = 7 - 4 \sqrt{3} .

We know,

 {a}^{2}   +  {b}^{2}  =  {(a + b)}^{2}   - 2ab .

[ab = (7 + 4√3)(7 - 4√3) = 1]

 \therefore a^2 - b^2 = {[(7 + 4 \sqrt{3}) + (7 - 4 \sqrt{3}]}^{2} - 2

 \implies a^2 - b^2 = (14)^2 - 2

 \implies a^2 - b^2 = 196 - 2

 \implies a^2 - b^2 = 194 . (Answer.)

Attachments:
Similar questions