Math, asked by ashu561333, 1 year ago

if
 {a}^{2}   + b {}^{2}  + c { }^{2}  = 20


and a + b + C
 = 0
find a b + bc+ ca​

Answers

Answered by MithuDas
2

Answer:

 - 10

Step-by-step explanation:

 {a}^{2}  +  {b }^{2}  +  {c}^{2}  =  {(a + b + c)}^{2}  - 2(ab + bc + ca) \\   = 20 =  {0}^{2}  - 2(ab + bc + ca) \\  = 2(ab + bc + ca) =  - 20 \\  = ab + bc + ca =  \frac{ - 20}{2}  \\  = ab + bc + ca =  - 10

PLEASE MARK MY ANSWER AS THE BRAINLIEST

Answered by Anonymous
6

Answer :-

ab + bc + ac = - 10

Explanation :-

Given :-

• a² + b² + c² = 20

• a + b + c =0

To find :-

ab + bc + ca

Solution :-

We know that :-

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

⇒ (a + b + c)² = a² + b² + c² + 2(ab + bc + ac)

Here, • a² + b² + c² = 20

• a + b + c =0

By substituting the values

⇒ (0)² = (20) + 2(ab + bc + ac)

⇒ 0 = 20 + 2(ab + bc + ac)

⇒ 0 - 20 = 2(ab + bc + ac)

⇒ - 20 = 2(ab + bc + ac)

⇒ - 20/2 = ab + bc + ac

⇒ - 10 = ab + bc + ac

⇒ ab + bc + ac = - 10

Therefore ab + bc + ac = - 10

Verification :-

(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)

⇒ (0)² = (20) + 2(-10)

⇒ 0 = 20 + 2(-10)

⇒ 0 = 20 - 20

⇒ 0 = 0

Identity used :-

• (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac

Similar questions