If
find the value of
Answers
Answered by
10
a+b+c=12
(a+b+c)2=122
a2+b2+c2+2(ab+bc+ca)=144
64+2(ab+bc+ca)=144
ab+bc+ca=144−642
=40
Answered by
7
Answer:
Using the identity is (a+b+c)
2
=a
2
+b
2
+c
2
+2ab+2bc+2ca
It is given that a
2
+b
2
+c
2
=50 and ab+bc+ca=47, therefore,
(a+b+c)
2
=a
2
+b
2
+c
2
+2ab+2bc+2ca
=a
2
+b
2
+c
2
+2(ab+bc+ca)
=50+(2×47)
=50+94=144
⇒(a+b+c)
2
=144
⇒a+b+c=−
144
,
144
⇒a+b+c=−12,12
Hence, the value of (a+b+c) is −12 or 12.
Similar questions