Math, asked by KirthanSrinivasan, 9 months ago

If
 {a}^{2}  +  {b}^{2}  +  \frac{1}{ {a}^{2} }  +  \frac{1}{ {b}^{2} }  = 4
Then find the value of
 \sqrt{ {a}^{2}  +  {b}^{2} }
Any irrelevant answers WILL BE REPORTED​

Answers

Answered by battuadityarao
0

Answer:

Step-by-step explanation:

\underline\red\red{\tt{\mid{\marquee{\huge{\boxed{ANSWER}}}\mid}}

→   a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}

→   \frac{a^4b^2+b^4a^2+b^2+a^2}{a^2b^2}=4\\

→   \frac{a^2b^2(a^2b+b^2a)+a^2+b^2}{a^2b^2}=4

→   ab(a+b)+a^2+b^2=4

→   a^2+b^2=4-ab(a+b)

→   \sqrt{a^2+b^2}=2-\sqrt{ab(a+b)}

       ∴hence\:proved

\underline{\huge{\huge{\huge{\huge{\red{\red{\red{\mid{\boxed{\boxed{PLEASE\:MARK\:ME\:AS\:BRAINLIEST}}}}}}}}}}}}\mid}}

Similar questions