Math, asked by Anonymous, 1 month ago

If
 {a}^{4 }  +  {b}^{4}  = 14 {a}^{2}  {b}^{2}
Then Show That
 log_{e}( {a}^{2}  +  {b}^{2} ) \:  \:  \:   =  \:  \:  \:  log_{e}a \: +  log_{e}b \:  + 2 log_{e}2
No spam ❌❌
Quality answer required ✅✅
All the best !!​

Answers

Answered by ridhya77677
33

Step-by-step explanation:

{a}^{4 } + {b}^{4} = 14 {a}^{2} {b}^{2} \\  =  >  ({ {a}^{2} })^{2}   + ( { {b}^{2} })^{2}  = 14 {a}^{2}  {b}^{2}  \\  =  > { ( {a}^{2}  +  {b}^{2} )}^{2}  - 2 {a}^{2}  {b}^{2}  = 14 {a}^{2}  {b}^{2}   \\  =  >  { ( {a}^{2}  +  {b}^{2} )}^{2} = 14 {a}^{2}  {b}^{2} + 2 {a}^{2}  {b}^{2}  \\  =  > { ( {a}^{2}  +  {b}^{2} )}^{2} = 16 {a}^{2}  {b}^{2}  \\  =  > ( {a}^{2}  +  {b}^{2} ) =  \sqrt{16 {a}^{2}  {b}^{2} }  \\  =  > ( {a}^{2}  +  {b}^{2} ) = 4ab \\

Now,putting the above value,lhs ,\: log_{e}( {a}^{2} + {b}^{2} )  \\  =   log_{e}(4ab)  \\  =  log_{e}(4)  +  log_{e}( a)  +  log_{e}(b)  \\  = log_{e}(a) \: + log_{e}(b) \: +  log_{e}( {2}^{2} ) \\ = log_{e}(a) \: + log_{e}(b) \: +  2log_{e}( 2)  \\  = rhs

Hence proved!!

__________________________________________

Used formula :

(x+y)²=x²+y²+2xy => x²+y²=(x+y)²-2xy

 ●log(xy)  =  log(x)  +  log(y)  \\ ● log( {x}^{y} )  = y log(x)

Answered by Anonymous
31

Formulas used :

 \star \: ( {x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\    {x}^{2}  +  {y}^{2}  =  {(x + y)}^{2}   - 2xy

 \star \: log(xy) = log(x) + log(y)

 \star \: log( {x}^{y} ) = ylog(x)

Attachments:
Similar questions