Math, asked by vasanth37, 1 year ago

If a = 9 - 4 \sqrt{5}
,find the value of a \frac{1}{a}


Anonymous: is it a + 1/a

Answers

Answered by Anonymous
4

Given \: Question \: Is \:  \:  \\  \\ a = 9 - 4 \sqrt{5}  \\  \\ Answer \:  \:  \\  \\  \frac{1}{a}  =  \frac{1}{9 - 4 \sqrt{5} }  \\  \\ Multiply \:  \: Numerator \:  \: by \: 9 + 4 \sqrt{5}  \\  \\  \frac{1}{a}  =  \frac{1}{9 - 4 \sqrt{5} }  \times  \frac{9 + 4 \sqrt{5} }{9 + 4 \sqrt{5} }  \\  \\  \frac{1}{a}  =   \frac{9 + 4 \sqrt{5} }{9 {}^{2} - (4 \sqrt{5} ) {}^{2}  }  \\  \\  \frac{1}{a}  =  \frac{9 + 4 \sqrt{5} }{81 - 80}  \\  \\  \frac{1}{a}  =  \frac{ 9 + 4 \sqrt{5} }{1}  \\  \\  \frac{1}{a}  = 9 + 4 \sqrt{5}  \\  \\ so \:  \:  \: a +  \frac{1}{a}  = 9 - 4  \sqrt{5}   + 9 + 4 \sqrt{5}  \\  \\ a +  \frac{1}{a}  = 18 \\  \\ Therefore \:  \: a +  \frac{1}{a}  = 18 \\  \\ Note \:  \\  \\ 1) \:  \: (a + b)(a - b) = a {}^{2}  - b {}^{2}  \\  \\ 2) \:  \:  \: a  \frac{1}{a}  = a +  \frac{1}{a}

Answered by Anonymous
3

Here is the answer...!!!

Refer to the attachment...!!!

Attachments:
Similar questions