If,
Then prove that
*No spamming*
Answers
Answered by
3
Hey !!!
acos@ + bsin@ = c ------1)
and , asin@ - bcos@ = +-√a²+ b² - c² proofe
First of all adding (acos@ + bsin@ ) and (asin@ - bcos@) and squaring both .
the we get ,
(acos@-bsin@ )² + (asin@+bcos@)²
= a²cos²@+b²sin²@-2acos@×b²sin@ +a²sin²@+b²cos²@ -2asin@×bcos@
= a²cos²@ + a²sin²@ +b²sin²@ + b²cos²@
↪ Rearranging the term
= a²(cos²@ + sin²@) + b²(sin²@ + cos²@)
= a² + b² -------2)
now , again adding ( acos@-bsin@) asin@+bcos@) and squaring both
(acos@-bsin@)² +(asin@+bcos@)² = a²+b²
↪from equation 2)
c² + (asin@ + bcos@)² = a²+b²
↪from equation 1)
(asin@ + bcos@)² = a²+b² -c²
asin@+bcos@ = +-√a²+b² -c² prooved
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope it helps you !!!
@Rajukumar111@@@@
acos@ + bsin@ = c ------1)
and , asin@ - bcos@ = +-√a²+ b² - c² proofe
First of all adding (acos@ + bsin@ ) and (asin@ - bcos@) and squaring both .
the we get ,
(acos@-bsin@ )² + (asin@+bcos@)²
= a²cos²@+b²sin²@-2acos@×b²sin@ +a²sin²@+b²cos²@ -2asin@×bcos@
= a²cos²@ + a²sin²@ +b²sin²@ + b²cos²@
↪ Rearranging the term
= a²(cos²@ + sin²@) + b²(sin²@ + cos²@)
= a² + b² -------2)
now , again adding ( acos@-bsin@) asin@+bcos@) and squaring both
(acos@-bsin@)² +(asin@+bcos@)² = a²+b²
↪from equation 2)
c² + (asin@ + bcos@)² = a²+b²
↪from equation 1)
(asin@ + bcos@)² = a²+b² -c²
asin@+bcos@ = +-√a²+b² -c² prooved
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope it helps you !!!
@Rajukumar111@@@@
Shatakshi96:
thx.
Answered by
2
a cosα + b sinα = c
Squaring on both sides.
(a cosα + b sinα)² = c²
a² cos²α +b² sin²α + 2(a cosα × b sinα)= c²
From this using formula sin²α + cos²α = 1
Then, a²(1-sin²α) + b² (1-cos²α) = c² - 2(a cosα × b sinα)
a² - a² sin²α + b² - b² cos²α = c² - 2(a cosα × b sinα)
a² + b² - c² = a² sin²α + b² cos²α - 2(a cosα × b sinα)
Rearranging (a cosα × b sinα) = (a sinα × b cosα)
a² + b² - c² = (a sinα - b cosα)²
a sinα - b cosα = +√ a² + b² - c² , -√a² + b² - c²
Hence proved.
___________________________________________________
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
Squaring on both sides.
(a cosα + b sinα)² = c²
a² cos²α +b² sin²α + 2(a cosα × b sinα)= c²
From this using formula sin²α + cos²α = 1
Then, a²(1-sin²α) + b² (1-cos²α) = c² - 2(a cosα × b sinα)
a² - a² sin²α + b² - b² cos²α = c² - 2(a cosα × b sinα)
a² + b² - c² = a² sin²α + b² cos²α - 2(a cosα × b sinα)
Rearranging (a cosα × b sinα) = (a sinα × b cosα)
a² + b² - c² = (a sinα - b cosα)²
a sinα - b cosα = +√ a² + b² - c² , -√a² + b² - c²
Hence proved.
___________________________________________________
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
Similar questions
Social Sciences,
8 months ago
Math,
8 months ago
Physics,
8 months ago
Computer Science,
1 year ago
English,
1 year ago
Physics,
1 year ago
Physics,
1 year ago