Math, asked by rukmani24052, 9 months ago

if
a \frac{1}{3}  + b \frac{1}{3}  + c \frac{1}{3}  = 0
then

( {a + b + c})^{3}
prove​

Answers

Answered by Anonymous
3

PROOF:

 {a}^{ \frac{1}{3} }  +  {b}^{ \frac{1}{3} }  +  {c}^{ \frac{1}{3} }  = 0 \\  {({a}^{ \frac{1}{3} }  +  {b}^{ \frac{1}{3} }  +  {c}^{ \frac{1}{3} })}^{3}  = 0 \\ (a + b + c) = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  {(a + b + c)}^{3} = 0

Answered by thephadhaisansar
0

Step-by-step explanation:

a

3

1

+b

3

1

+c

3

1

=0

(a

3

1

+b

3

1

+c

3

1

)

3

=0

(a+b+c)=0

(a+b+c)

3

=0

Similar questions