Math, asked by Mimshan, 5 months ago

if a-\frac{1}{a}=2, then prove that
 {a}^{8}  - 34 {a}^{4}  + 1 = 0

★Answer need with step by step explanation.
★Don't spam plz​

Answers

Answered by Anonymous
68

Given -

  • \sf a-\frac{1}{a}=2

To prove -

  • \sf a^8 - 34a^4 + 1=0

Proof -

  • \sf a-\frac{1}{a}=2

Squaring both sides

  • Apply Identity
  • (a - b)² = a² - 2ab + b²

\\\implies\sf a^2 - 2\times{a}\times\dfrac{1}{a} +\dfrac{1}{a^2} = 4\\\\

\implies\sf a^2 - 2 + \dfrac{1}{a^2}=4\\\\

\implies\sf a^2  + \dfrac{1}{a^2}=4+2\\\\

\implies\sf a^2  + \dfrac{1}{a^2}=6\\\\

Squaring both sides again

  • Apply Identity
  • (a + b)² = a² + 2ab + b²

\implies\sf a^4  + 2\times{a^2}\times\dfrac{1}{a^2}+\dfrac{1}{a^4}=36\\\\

\implies\sf a^4  + 2 +\dfrac{1}{a^4}=36\\\\

\implies\sf a^4 +\dfrac{1}{a^4}=36-2\\\\

\implies\sf a^4 +\dfrac{1}{a^4}=34\\\\

\implies\sf a^4 +\dfrac{1}{a^4}-34=0\\\\

\implies\sf \dfrac{a^8 +1 - 34a^4}{a^4}=0\\\\

  • aᵐ × aⁿ = aᵐ⁺ⁿ

\\\\\implies\sf a^8 +1 - 34a^4=0\\\\

\implies\sf a^8 -34a^4+1 = 0\\\\

  • \large{\underline{\boxed{\tt{\therefore a^8-34a^4+1=0\:\: Proved}}}}

__________________________________________


Anonymous: Thanks!
Answered by Anonymous
10

Answer:

Given :-

 \sf \: a -  \dfrac{1}{a}

To Proof :-

 {a}^{8} - 34 {a}^{4} + 1 = 0

Required Proof

  • Identity = (a - b)² = a² - 2ab + b²

 \huge \sf \: \:  {a}^{2}  - 2a \times  \dfrac{1}{a}  \times  \dfrac{1}{ {a}^{2} }  = 4

  \huge\sf \:  {a}^{2}  - 2 +  \dfrac{1}{a {}^{2} }  = 4

  \huge\sf \:  {a}^{2}  +  \dfrac{1}{ {a}^{2} }  = 4 + 2

 \huge \sf \:  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 6

Let's

Again square both sides by using identity

(a + b)² = a² + 2ab + b²

 \huge \sf \:  {a}^{4}  + 2 {a}^{2}  \times  \frac{1}{ {a}^{2} }  +  \frac{1}{ {a}^{4} }  = 36

 \huge \sf \:  {a}^{4}  + 2 +  \frac{1}{ {a}^{4} }  = 36

 \huge \sf \:  {a}^{4}  +  \frac{1}{ {a}^{4} }  = 36 - 2

 \huge \sf \:  {a}^{4}  +  \frac{1}{ {a}^{4} }  = 34

 \huge \sf \:  {a}^{4}  +  \frac{1}{ {a}^{4} }  - 34 = 0

 \huge \sf \:  \frac{ {a}^{8}  + 1 - 34 {a}^{4} }{a {}^{4} }  = 0

 \huge \sf \:  {a}^{8}  + 1 - 34 {a}^{4}  = 0

 \huge \sf \:  {a}^{8}  - 34 {a}^{4}  + 1 = 0

Hence proved.

Similar questions