Math, asked by Akhiltty242, 1 year ago

If  A= \left[\begin{array}{ccc}1&3\\3&4\end{array}\right] , find the values of x and y, if A² – xA + yI = 0.

Answers

Answered by hukam0685
0
Answer:

x = 5 \\ y = - 5 \\
Solution:

 A= \left[\begin{array}{ccc}1&3\\3&4\end{array}\right]

 A^{2}= \left[\begin{array}{ccc}1&3\\3&4\end{array}\right] \times \left[\begin{array}{ccc}1&3\\3&4\end{array}\right]

 A^{2}= \left[\begin{array}{ccc}1+9&3+12\\3+12&9+16\end{array}\right]

 A^{2}= \left[\begin{array}{ccc}10&15\\15&25\end{array}\right]...eq1

 xA= \left[\begin{array}{ccc}x&3x\\3x&4x\end{array}\right] ....eq2

 yI= \left[\begin{array}{ccc}y&0\\0&y\end{array}\right] ...eq3

Place all values in the equation

 {A}^{2} - xA + yI = 0 \\

\left[\begin{array}{ccc}10&15\\15&25\end{array}\right]-\left[\begin{array}{ccc}x&3x\\3x&4x\end{array}\right]+\left[\begin{array}{ccc}y&0\\0&y\end{array}\right] =0\\

\left[\begin{array}{ccc}10-x+y&15-3x\\15-3x&25-4x+y\end{array}\right]=\left[\begin{array}{ccc}0&0\\0&0\end{array}\right]\\

So equate

15 - 3x = 0 \\ \\ - 3x = -15 \\ \\ x = 5 \\ \\

10 - x + y = 0 \\ \\ - x + y = - 10 \\ \\ y = - 10 + 5 \\ \\ y = - 5 \\
Hope it helps you
Answered by MaheswariS
0

Answer:

x=5 and y= -5

Step-by-step explanation:


Concept:

Cayley Hamilton theorem:

Every square matrix satisfies its characteristic equation.

A=\left[\begin{array}{ccc}1&3\\3&4\end{array}\right]



characteristic equation is |A-xI|=0

\left|\begin{array}{ccc}1-x&3\\3&4-x\end{array}\right|=0

expanding we get

(1-x)(4-x) - 9 = 0

(x-1)(x-4) - 9 =0

x² - 5x +4 -9=0

x² - 5x -5=0


By caley hamilton theorem,

matrix A will satisfy x² - 5x -5=0


so we have,

A² - 5A -5I=0


comparing this with A² - xA +yI=0 we get


x=5 and y=-5


Similar questions