If . prove that this:
Answers
Wrong question probably :
Correct question is as :
a sin B + b cos B = c
Upon squaring both sides we get :
⇒ ( a sin B + b cos B )² = c²
Using the formula of expansion of ( a + b )² = a² + b² + 2 ab :
⇒ a² sin²B + b² cos²B + 2 ab sin B cos B = c²
Use the formula of sin²B = 1 - cos²B .
Use the formula of cos²B = 1 - sin²B .
⇒ a²( 1 - cos²B ) + b²( 1 - sin² B ) + 2 ab sin B cos B = c²
⇒ a² - a²cos²B + b² - b² sin²B + 2 ab sin B cos B = c²
Transpose the required values :
⇒ - a²cos²B - b²sin²B + 2 ab sin B cos B = c² - a² - b²
Multiplying both sides by negative signs we get :
⇒ a²cos²B + b²sin²B - 2 ab sin B cos B = a² + b² - c²
Use the formula a² + b² - 2 ab = ( a - b )² :
⇒ ( a cos B - b sin B )² = a² + b² - c²
Taking square roots both sides we get :
⇒ a cos B - b sin B = ± √ ( a² + b² - c² )
Hence the given equation is proved !
Your question is wrong.
Actually it should be >
QUESTION
a Sin B + b Cos B = c
-To Prove
( a CosB - b SinB )= √( a² + b² - c²)
ANSWER
We know that >
a sin B + b Cos B = c
=>(a Sin B + b Cos B)² = c²
{Squaring both sides}
=> a²Sin²B +b²Cos²B + 2a.b.Cos B.SinB = c²
-----------(i)
Now,let us assume=
a Cos B - b Sin B = d
On squaring both sides we get =>
(a Cos B - b Sin B)² = d²
=>a²Cos²B + b² Sin²B - 2a.b.Sin B.Cos B= d²
-----------(ii)
Now on adding equation (i) and equation (ii) we get =>
a²Sin²B + b²Cos²B - 2a.b.Sin B.Cos B + a²Cos²B + b² Sin²B - 2a.b.Sin B.Cos B =d² + c²
=> a²Sin²B + b²Cos²B + a²Cos²B + b²Sin²B = d² + c²
=>(Sin²B + Cos²B)a² + (Sin²B + Cos²B)b² = d² + c²
But we know that >
Sin²B + Cos²B = 1
Now on applying this ratio on the expression we get =>
a² + b² = d² + c²
=> a² + b² - c² = d²
=> d = √(a² + b² - c²)
=> a CosB - b SinB = √(a² + b² -c²)
Hence proved.
Remember
1)
2)
3)
4)
5)
6)
7)
8)
9)