Math, asked by RudrarajBarot, 2 months ago

if
 \alpha \: and \:  \beta  \: are \: the \: zeroes \: of \: eqution \:   {6}^{2}  +  x - 2 = 0 \: find \:  \binom{ \alpha }{ \beta }  +  \binom{ \beta }{ \alpha }

Answers

Answered by mahendranath1542
0

Answer:

Open main menu

Search

Beta-binomial distribution

Language

Download PDF

Watch

Edit

In probability theory and statistics, the beta-binomial distribution is a family of discrete probability distributions on a finite support of non-negative integers arising when the probability of success in each of a fixed or known number of Bernoulli trials is either unknown or random. The beta-binomial distribution is the binomial distribution in which the probability of success at each of n trials is not fixed but randomly drawn from a beta distribution. It is frequently used in Bayesian statistics, empirical Bayes methods and classical statistics to capture overdispersion in binomial type distributed data.

Probability mass function

Probability mass function for the beta-binomial distribution

Cumulative distribution function

Cumulative probability distribution function for the beta-binomial distribution

Parameters

n ∈ N0 — number of trials

{\displaystyle \alpha >0}\alpha >0 (real)

{\displaystyle \beta >0}\beta >0 (real)

Support

k ∈ { 0, …, n }

PMF

{\displaystyle {\binom {n}{k}}{\frac {\mathrm {B} (k+\alpha ,n-k+\beta )}{\mathrm {B} (\alpha ,\beta )}}\!}{\displaystyle {\binom {n}{k}}{\frac {\mathrm {B} (k+\alpha ,n-k+\beta )}{\mathrm {B} (\alpha ,\beta )}}\!}

CDF

{\displaystyle {\begin{cases}0,&k<0\\{\binom {n}{k}}{\tfrac {\mathrm {B} (k+\alpha ,n-k+\beta )}{\mathrm {B} (\alpha ,\beta )}}{}_{3}\!F_{2}({\boldsymbol {a}},{\boldsymbol {b}},k),&0\leq k<n\\1,&k\geq n\end{cases}}}{\displaystyle {\begin{cases}0,&k<0\\{\binom {n}{k}}{\tfrac {\mathrm {B} (k+\alpha ,n-k+\beta )}{\mathrm {B} (\alpha ,\beta )}}{}_{3}\!F_{2}({\boldsymbol {a}},{\boldsymbol {b}},k),&0\leq k<n\\1,&k\geq n\end{cases}}}

where 3F2(a,b,k) is the generalized hypergeometric function

{\displaystyle {}_{3}\!F_{2}(1,-k,n\!-\!k\!+\!\beta ;n\!-\!k\!-\!1,1\!-\!k\!-\!\alpha ;1)\!}{\displaystyle {}_{3}\!F_{2}(1,-k,n\!-\!k\!+\!\beta ;n\!-\!k\!-\!1,1\!-\!k\!-\!\alpha ;1)\!}

Mean

{\displaystyle {\frac {n\alpha }{\alpha +\beta }}\!}{\frac {n\alpha }{\alpha +\beta }}\!

Variance

{\displaystyle {\frac {n\alpha \beta (\alpha +\beta +n)}{(\alpha +\beta )^{2}(\alpha +\beta +1)}}\!}{\frac {n\alpha \beta (\alpha +\beta +n)}{(\alpha +\beta )^{2}(\alpha +\beta +1)}}\!

Skewness

{\displaystyle {\tfrac {(\alpha +\beta +2n)(\beta -\alpha )}{(\alpha +\beta +2)}}{\sqrt {\tfrac {1+\alpha +\beta }{n\alpha \beta (n+\alpha +\beta )}}}\!}{\tfrac {(\alpha +\beta +2n)(\beta -\alpha )}{(\alpha +\beta +2)}}{\sqrt {{\tfrac {1+\alpha +\beta }{n\alpha \beta (n+\alpha +\beta )}}}}\!

Ex. kurtosis

See text

MGF

{\displaystyle _{2}F_{1}(-n,\alpha ;\alpha +\beta ;1-e^{t})\!}_{{2}}F_{{1}}(-n,\alpha ;\alpha +\beta ;1-e^{{t}})\!

{\displaystyle {\text{for }}t<\log _{e}(2)}{\text{for }}t<\log _{e}(2)

CF

{\displaystyle _{2}F_{1}(-n,\alpha ;\alpha +\beta ;1-e^{it})\!}_{{2}}F_{{1}}(-n,\alpha ;\alpha +\beta ;1-e^{{it}})\!

PGF

{\displaystyle {\frac {_{2}F_{1}(-n,\alpha ;-\beta -n+1;z)}{_{2}F_{1}(-n,\alpha ;-\beta -n+1;1)}}}{\displaystyle {\frac {_{2}F_{1}(-n,\alpha ;-\beta -n+1;z)}{_{2}F_{1}(-n,\alpha ;-\beta -n+1;1)}}}

It reduces to the Bernoulli distribution as a special case when n = 1. For α = β = 1, it is the discrete uniform distribution from 0 to n. It also approximates the binomial distribution arbitrarily well for large α and β. Similarly, it contains the negative binomial distribution in the limit with large β and n. The beta-binomial is a one-dimensional version of the Dirichlet-multinomial distribution as the binomial and beta distributions are univariate versions of the multinomial and Dirichlet distributions respectively.

Motivation and derivation

Moments and properties

Point estimates

Further Bayesian considerations

Shrinkage factors

Related distributions

See also

References

External links

Last edited 10 months ago by TripleShortOfACycle

RELATED ARTICLES

Gamma distribution

Probability distribution

Ratio distribution

Product distribution

Content is available under CC BY-SA 3.0 unless otherwise noted.

Privacy policy Terms of UseDesktop

Answered by madhumitha4687
2

hii friend

good morning

how are you

have a great day

Similar questions