Math, asked by sanha9, 2 months ago

If
 \alpha  \: and \:  \beta \:  are \:  the \: zeros \: of \: the \: polynomial \:f(x) =  {x }^{2}  + px + q \: then \:  \: a \: polynomial \: having \:  \frac{1}{ \alpha } \:  and \:  \frac{1}{ \beta }  \: is \: its \: zeros \: is \\ a) {x}^{2}  + qx + p \\  \\ b) {x}^{2}  - px + q \\ c)q {x}^{2}  + px + 1 \\ d)p {x}^{2}  + qx + 1

Answers

Answered by adityarawat28122004
1

Plz complete your question.

I think your question is wrong or incomplete. Plz send your question picture

Sorry for spam.

Answered by mathdude500
2

\large\underline{\sf{Given- }}

 \:  \:  \:  \:  \:  \:  \:  \bull \:  \:  \sf \:  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: f(x) =  {x}^{2} + px + q

\large\underline{\sf{To\:Find - }}

  \:  \:  \:  \:  \:  \:  \:  \bull \:  \: \sf \: a \: polynomial \: having \: zeroes \: \dfrac{1}{ \alpha }  \: and \: \dfrac{1}{ \beta }

\large\underline{\sf{Solution-}}

  • Given that,

 \rm :\longmapsto\:\sf \:  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: f(x) =  {x}^{2} + px + q

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

Or

\boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

Or

\boxed{\purple{\tt Product\ of\ the\ zeroes=\frac{c}{a}}}

So,

\rm :\longmapsto\: \alpha + \beta = \dfrac{-b}{a} = \:   - \:  p

And

\rm :\longmapsto\: \alpha  \beta  =    \: \dfrac{c}{a}  =  \: q

Now,

Consider,

\rm :\longmapsto\:S = \dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }  = \dfrac{ \alpha   + \beta }{ \alpha  \beta }  = \dfrac{ - p}{q}

And

\rm :\longmapsto\:P = \dfrac{1}{ \alpha }  \times \dfrac{1}{ \beta }  = \dfrac{1}{ \alpha  \beta }  = \dfrac{1}{q}

Now,

  • We know that, a quadratic polynomial whose sum of zeroes is S and Product of zeroes is P, is given by

\rm :\longmapsto\:p(x) =k({x}^{2}  - Sx + P) \: where \: k \ne \: 0

 \sf \: Hence, \sf \: a \: polynomial \: having \: zeroes \: \dfrac{1}{ \alpha }  \: and \: \dfrac{1}{ \beta } is \: given \: by

So, on substituting the values of S and P, we get

\rm :\longmapsto\:p(x) =  k \bigg({x}^{2}  - (\dfrac{ - p}{q} )x + \dfrac{1}{q} \bigg) \: where \: k \ne \: 0

\rm :\longmapsto\:p(x) = \dfrac{k}{q} \bigg( {qx}^{2} + px + 1  \bigg)  \:where \: k \ne \: 0

\overbrace{ \underline { \boxed { \rm \therefore \: The \: required \: polynomial \:  = \:  {qx}^{2} + px + 1 }}}

\bf\implies \:option \: (c) \: is \: correct

Additional Information

 \boxed{ \bf \:  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta }

 \boxed{ \bf \:  { \alpha }^{3}  +  { \beta }^{3}  =  {( \alpha  +  \beta )}^{3}  - 3 \alpha  \beta ( \alpha  +  \beta )}

 \boxed{ \bf \:  {( \alpha  +  \beta )}^{2}  -  {( \alpha  -  \beta )}^{2}  = 4 \alpha  \beta }

Similar questions
History, 1 month ago