Math, asked by gogoistic, 2 months ago

if
 \alpha \:  \:  \: and \:  \:  \beta
are the roots of
8x {}^{2}  - 6x + 3 = 0
from an equation whose roots are
 \alpha  - 3 \: and \:  \beta  - 3.

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha  \: and \:  \beta  \: are \: the \: roots \: of  \: {8x}^{2} - 6x + 3 = 0

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\: \alpha + \beta =  - \dfrac{( - 6)}{8}  = \dfrac{3}{4}

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\: \alpha  \beta  = \dfrac{3}{8}

Now, we have to form a quadratic equation whose roots

\rm :\longmapsto\: \alpha  - 3 \: and \:  \beta  - 3

Let Consider,

Sum of zeroes,

\rm :\longmapsto\: \alpha  - 3 \: +  \:  \beta  - 3

\rm \:  =  \:  \:( \alpha   + \beta ) - 6

\rm \:  =  \:  \:\dfrac{3}{4}  - 6

\rm \:  =  \:  \:\dfrac{3 - 24}{4}

\rm \:  =  \:  \: -  \: \dfrac{21}{4}

Now,

Consider, Product of zeroes,

\rm :\longmapsto\: (\alpha  - 3) \: \times   \:  (\beta  - 3)

\rm \:  =  \:  \: \alpha  \beta  - 3 \alpha - 3  \beta  + 9

\rm \:  =  \:  \: \alpha  \beta  - 3 (\alpha  +  \beta )+ 9

\rm \:  =  \:  \:\dfrac{3}{8}  - 3 \times \dfrac{3}{4}  + 9

\rm \:  =  \:  \:\dfrac{3}{8}  -  \dfrac{9}{4}  + 9

\rm \:  =  \:  \:\dfrac{3 - 18 + 72}{8}

\rm \:  =  \:  \:\dfrac{57}{8}

So, we have

\boxed{\red{\sf Sum\ of\ the\ zeroes= -  \: \frac{21}{4}}}

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{57}{8}}}

Now,

Required Quadratic equation is given by

\rm :\longmapsto\: {x}^{2} - (Sum \: of \: zeroes)x + Product \: of \: zeroes = 0

\rm :\longmapsto\: {x}^{2} - {\bigg( - \dfrac{21}{4} \bigg) }x + {\bigg(\dfrac{57}{8} \bigg) } = 0

\rm :\longmapsto\: {x}^{2}  + {\bigg( \dfrac{21}{4} \bigg) }x + {\bigg(\dfrac{57}{8} \bigg) } = 0

\rm :\longmapsto\: {8x}^{2} + 42x + 57 = 0

Additional Information :-

\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3} +  b {x}^{2} +  cx + d, \: then

\boxed{ \sf{ \: \alpha  +  \beta  +  \gamma  =  -  \frac{b}{a}}}

\boxed{ \sf{ \: \alpha \beta   +  \beta  \gamma  +  \gamma \alpha   =  \frac{c}{a}}}

\boxed{ \sf{ \: \alpha \beta\gamma  =  -  \frac{d}{a}}}

Similar questions