Math, asked by dhivajayasubha, 1 year ago

if
 \alpha  \: and \:  \beta  \\
are the roots of the quadratic equation
 {x}^{2}  +  \sqrt{2} x + 3 = 0
form a quadratic polynomial with zeroes
1 \div  \alpha  \: 1 \div  \beta

Answers

Answered by navnitakrshnan
2

Step-by-step explanation:

these are the following steps to the answer.

Hope you understand

Attachments:

dhivajayasubha: thanks a lot
dhivajayasubha: it helped me to do my hm
navnitakrshnan: you are welcomed
Answered by Anonymous
4

Answer \:  \\  \\ Given \: Quadratic \: Equation \:  \: Is \:  \\  \\ x {}^{2}  +  \sqrt{2} x + 3 = 0 \\  \\  \alpha  +  \beta  =  \frac{ -  \sqrt{2} }{1}  \:  \:  \:  \: and \:  \:  \alpha  \beta  =  \frac{3}{1}  \\  \\  \alpha   + \beta  =  -  \sqrt{2}  \:  \:  \:  \: and \:  \:  \:  \:  \:  \alpha  \beta  = 3 \\  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \alpha   + \beta }{ \alpha  \beta }  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ -  \sqrt{2} }{3}  \\  \\   \frac{1}{ \alpha }  \times  \frac{1}{  \beta  }  =  \frac{1}{3}  \\  \\ let \: the \: required \: Quadratic \: polynomial \: be \: p(x) \\  \\ p(x) = x {}^{2}  - ( \frac{1}{ \alpha }  +  \frac{1}{ \beta } )x +  \frac{1}{ \alpha  \beta }  \\  \\ p(x) = x {}^{2}  - (  \frac{ -  \sqrt{2} }{3} )x +  1  \\  \\ p(x) =(3 x {}^{2}  +  \sqrt{2} x + 1) \frac{1}{3}

Similar questions