Math, asked by harshchaurasiya01, 7 months ago

If
 \alpha  \:  and \:  \beta
are the roots of the quadratic equation x²+x-2=0, Find the value of
 { \alpha }^{ - 1 }  -  { \beta }^{ - 1}


DO NOT MAKE SPAM​

Answers

Answered by Anonymous
4

 \bf \huge \bigstar \red{Answer : } \\  \\  \bf \:  {x}^{2}  + x - 2 \\  \\ \bf wkt :  -  \\  \\ a = 1 \\ b = 1 \\ c =  - 2 \\  \\  \bf \: now \\  \\ \sf  \alpha  +  \beta  =  \frac{ - b}{a}  =  - 1 \\  \\  \sf \alpha  \beta  =  \frac{c}{a}  =  - 1 \\  \\  \bf \: then \\  \\  \frac{1}{ \alpha }  -  \frac{1}{ \beta }  =  \frac{ \beta  -  \alpha }{ \alpha  \beta }  \\  \\   \implies \frac{ \sqrt{ {( \alpha  +  \beta )}^{2}  - 4( - 2)} }{ \alpha  \beta }  \\  \\  \implies \:  \frac{ \sqrt{ {( - 1)}^{2} + 8 } }{ - 2}  \\  \\  \implies \:  \frac{ \sqrt{9} }{ - 2}  \\  \\  \implies \:  \frac{ - 3}{2}  \\  \\  \bf \boxed{value \:  \: of \:  \:  \frac{1}{ \alpha }  -  \frac{1}{ \beta } =  \frac{ - 3}{2}  }

Answered by Anonymous
0

Step-by-step explanation:

★Answer:

x

2

+x−2

wkt:−

a=1

b=1

c=−2

now

α+β=

a

−b

=−1

αβ=

a

c

=−1

then

α

1

β

1

=

αβ

β−α

αβ

(α+β)

2

−4(−2)

−2

(−1)

2

+8

−2

9

2

−3

valueof

α

1

β

1

=

2

−3

Similar questions