Math, asked by shasha39854, 11 months ago

if
 \alpha and \:  \beta
are the zeroes of the polynomial f(x)=x
x { }^{2}  - 2x + 3
then find the quadratic equation whose zeroes would be
 \alpha  + 2 \: and \:  \beta  + 2

Answers

Answered by rishu6845
3

Answer:

x² - 6x + 11

Step-by-step explanation:

Given---->

 \alpha  \: and \:  \beta  \: are \: zeroes \: of \: the \: polynomial

f( \: x \: ) =  {x}^{2} - 2x + 3

To find---->

quadratic \: equation \: whose \: zeroes \: are \: ( \alpha  + 2) \: and \: ( \beta  + 2 \: )

Concept used---->

1)

if \: polynomial \: ( \: a {x}^{2} \:  + bx \:  + c \: ) \: have \: zeroes \:  \alpha  \: and \:  \beta  \: then

 \alpha  \:  +  \:  \beta  =  -  \dfrac{b}{a}

 \alpha  \:  \beta =   \:  \dfrac{c}{a}

2)

if \: we \: know \: the \: sum \: of \: zeroes  \\ \: and \: product \: of \: zeroes \: then \: quadratic \: poynomial \: is \:

 {x}^{2}  \:  - ( \: sum \: of \: zeroes \: )x \:  + product \: of \: zeroes

Solution----> ATQ,

f( \: x \: ) =  {x}^{2}  - 2x \:  + 3

comparing \: it \: with \: a {x}^{2} + bx + c

a \:  = 1

b \:  =  - 2

c \:  = 3

 \alpha  \:  +  \:  \beta  =  -  \dfrac{ - 2}{1}

 \alpha  \:  +  \:  \beta  = 2

 \alpha  \beta  =  \dfrac{3}{1}

 \alpha  \beta  = 3

now \: we \: have \: to \: find \: the \: polynomial \: whose \: zeroes \: are \: ( \alpha  + 2) \: and \: ( \beta  + 2)

now

sum \: of \: zeroes \:  = ( \alpha  + 2) +  \: ( \beta  + 2)

 \:  \:  =  \alpha  +  \beta  + 4

 \:  \:  = 2 + 4

 \:  \:  = 6

product \: of \: zeroes \:  = ( \alpha  + 2) \: ( \beta  + 2)

 =  \alpha  \beta  + 2 \alpha  + 2 \beta  + 4

 =  \alpha  \beta  + 2( \alpha  +  \beta ) + 4

 = 3 + 2(2) + 4

 = 3 + 4 + 4

 = 11

now \: required \: polynomial \: is \:

x ^{2}  - (sum \: of \: zeroes \: )x \:  + product \: of \: zeroes \:  = 0

 ={x}^{2} \:  - (6)x + 11

 =  {x}^{2}  \:  - 6x \:  + 11

Similar questions