If are the zeros of the quadratic polynomial ,prove that
Answers
SOLUTION :
Given : α and β are the roots of the quadratic polynomial f(x)= x² - px + q
On comparing with ax² + bx + c,
a = 1 , b = -p , c = q
Sum of the zeroes = −coefficient of x / coefficient of x²
α + β = -b/a = -(-p)/1 = p
α+β = p ……………………….(1)
Product of the zeroes = constant term/ Coefficient of x²
αβ = c/a = q/1 = q
α×β = q ………………..(2)
LHS = α²/β² + β²/α²
= α⁴ +β⁴ / α²β² [By taking L.C.M]
As we know that, a⁴ +b⁴ = (a² + b²)² – 2a²b²
= (α² + β²)² – 2(αβ)² /(αβ)²
= [(α+β)²–2αβ]² –2 (αβ)² /(αβ)²
[ a² + b² = (a + b)² - 2ab ]
= [p² –2q]² –2(q)²/(q)²
= [(p²)² + (2q)² - 2× p²× 2q] - 2q² / q²
= (p⁴ + 4q² - 4p²q)–2q² /q²
[ (a - b)² = a² + b² - 2ab ]
= (p⁴ + 4q² –2q² - 4p²q) /q²
= (p⁴ + 2q² - 4p²q) /q²
= p⁴/q² +2q²/q² - 4p²q/q²
α²/β² + β²/α² = p⁴/q² - 4p²/q + 2
LHS = RHS
Hence, proved.
HOPE THIS ANSWER WILL HELP YOU….
Answer:
SOLUTION :
Given : α and β are the roots of the quadratic polynomial f(x)= x² - px + q
On comparing with ax² + bx + c,
a = 1 , b = -p , c = q
Sum of the zeroes = −coefficient of x / coefficient of x²
α + β = -b/a = -(-p)/1 = p
α+β = p ……………………….(1)
Product of the zeroes = constant term/ Coefficient of x²
αβ = c/a = q/1 = q
α×β = q ………………..(2)
LHS = α²/β² + β²/α²
= α⁴ +β⁴ / α²β² [By taking L.C.M]
As we know that, a⁴ +b⁴ = (a² + b²)² – 2a²b²
= (α² + β²)² – 2(αβ)² /(αβ)²
= [(α+β)²–2αβ]² –2 (αβ)² /(αβ)²
[ a² + b² = (a + b)² - 2ab ]
= [p² –2q]² –2(q)²/(q)²
= [(p²)² + (2q)² - 2× p²× 2q] - 2q² / q²
= (p⁴ + 4q² - 4p²q)–2q² /q²
[ (a - b)² = a² + b² - 2ab ]
= (p⁴ + 4q² –2q² - 4p²q) /q²
= (p⁴ + 2q² - 4p²q) /q²
= p⁴/q² +2q²/q² - 4p²q/q²
α²/β² + β²/α² = p⁴/q² - 4p²/q + 2
LHS = RHS
Hence, proved.
HOPE THIS ANSWER WILL HELP YOU….