Math, asked by BrainlyHelper, 1 year ago

If  \alpha and \beta are the zeros of the quadratic polynomial  f(x)=x^{2}+px+q ,from a polynomial whose zeros are  (\alpha+\beta)^{2} and (\alpha-\beta)^{2}

Answers

Answered by nikitasingh79
0

SOLUTION :

Given : α and β are the zeroes of the quadratic polynomial  f(x) = x² + px + q

On comparing with ax² + bx + c,

a = 1 , b = p , c = q

Sum of the zeroes = −coefficient of x / coefficient of x²

α + β  = -b/a = - p/1 = -p

α + β = - p……………………….(1)

Product of the zeroes = constant term/ Coefficient of x²

αβ = c/a = q/1 = q

αβ = q ………………………..(2)

ATQ

Sum of the zeroes of required polynomial = (α + β)² + (α–β)²

= (α + β)² + (α² + β²  –2αβ)

[(a - b )² = a² + b² -2ab]

= (α+β)² +(α + β)² –2αβ–2αβ

[From this identity (a + b )² = a² + b²  + 2ab , we get (a + b )² - 2ab = a² + b² ]

=  (α + β)² +(α + β)² –4αβ

= (−p)² + (−p)² - 4×q

[From eq 1 & 2]

= p² + p² –4q

= 2p² –4q ………………..(3)

Product of the zeroes of required polynomial = (α + β)² (α–β)²

(α + β)² (α² + β²  –2αβ)

(α + β)² (α+β)² –2αβ–2αβ

(α + β)² (α+β)² –4αβ

= (- p)² (- p)² –4q)

[From eq 1 & 2]

= p² (p² –4q)................(4)

So, the quadratic polynomial is ,

k(x²–(sum of the zeroes)x + (product of the zeroes)

[ k is any non zero real integer]

= k(x² –(2p²  - 4q)x + p² (p² - 4q)

[From eq 3  & 4]

Hence, the required quadratic polynomial is f(x)= k( x² –(2p²  - 4q)x + p² (p² - 4q)

HOPE THIS ANSWER WILL HELP YOU...

Answered by Harshikesh16726
0

Answer:

f(x)=x

2

+px+q

Roots are α and β

α+β=−p

αβ=q

(α+β)

2

=p

2

(α−β)

2

=(α+β)

2

−4αβ

p

2

−4q

New Roots are (α+β)

2

and (α−β)

2

Sum=(α+β)

2

+ (α−β)

2

=p

2

+p

2

−4q

=2(p

2

−2q)

Product=(α+β)

2

(α−β)

2

=p

2

(p

2

−4q)

∴f(x)=K(x

2

−2(p

2

−2q)x+p

2

(p

2

−4q))

Similar questions