Math, asked by madhav5245, 3 days ago

If

 \alpha   \: \beta  \:  \gamma  \: are \: roots \: of \:  {x}^{3}  +  {px}^{2}  + qx + r = 0 \:

form an equation whose roots are

 \alpha  -  \frac{1}{ \beta  \gamma } , \beta  -  \frac{1}{ \gamma  \alpha } , \gamma  -  \frac{1}{ \alpha  \beta }

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

\rm \:  \alpha,  \beta,  \gamma \: are \: roots \: of \:  {x}^{3} +  {px}^{2} + qx + r = 0 \\

So,

\rm\implies \: \alpha   + \beta  +  \gamma  =  -  \:  \: p \\

\rm\implies \: \alpha \beta  +  \beta  \gamma +  \gamma  \alpha   =  q \\

and

\rm\implies \: \alpha  \beta  \gamma \:   = \:   -  \: r \\

Let assume that the transformed equation is in y.

So, it means

\rm \: y =  \alpha  - \dfrac{1}{ \beta  \gamma }  \\

can be rewritten as

\rm \: y =  \alpha  - \dfrac{ \alpha }{  \alpha \beta  \gamma }  \\

\rm \: y =  \alpha  - \dfrac{ \alpha }{ - r}  \\

[\rm \:  \because \:  \alpha  \beta  \gamma  =  - r \: ] \\

\rm \: y =  \alpha \bigg[1 + \dfrac{1}{r} \bigg] \\

\rm \: y =  \alpha \bigg[\dfrac{r + 1}{r} \bigg] \\

As it is given that,

\rm \:  \alpha,  \beta,  \gamma \: are \: roots \: of \:  {x}^{3} +  {px}^{2} + qx + r = 0 \\

\rm\implies \: \alpha  = x \\

On substituting this value in above expression, we get

\rm \: y = x\bigg[\dfrac{r + 1}{r} \bigg] \\

\rm\implies \:x = \dfrac{ry}{r + 1}  \\

So, on substituting this value of x in given polynomial

\rm \:  {x}^{3} +  {px}^{2} + qx + r = 0 \\

we get,

\rm \:  {\bigg[\dfrac{yr}{r + 1} \bigg]}^{3}  + p {\bigg[\dfrac{yr}{r + 1} \bigg]}^{2} + q\bigg[\dfrac{yr}{r + 1} \bigg] + r = 0 \\

On taking LCM, we get

\rm \:  {y}^{3} {r}^{3} +  {pr}^{2} {y}^{2}(r + 1) + qry {(r + 1)}^{2} + r {(r + 1)}^{3}  = 0 \\

On dividing whole equation by r, we get

\rm \:  {y}^{3} {r}^{2} +  {pr} {y}^{2}(r + 1) + qy {(r + 1)}^{2} +  {(r + 1)}^{3}  = 0 \\

Hence, the required equation is

 \\ \rm \:  {r}^{2} {y}^{3} +  {pr}(r + 1) {y}^{2}  + q {(r + 1)}^{2} y+  {(r + 1)}^{3}  = 0 \\  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then} \\

\boxed{ \bf{ \:  \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a}}} \\

\boxed{ \bf{ \:  \alpha \beta    + \beta \gamma   +  \gamma \alpha   =  \dfrac{c}{a}}} \\

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}} \\

Similar questions