Math, asked by aditisinghrathour200, 11 months ago

If
 \alpha  \beta  \gamma  \: are \: zeroes \: of \: 6 {x}^{2}  + 3 {x }^{2}  - 5x \:  + 1 \: then \:
then find value of
 { \alpha }^{ - 1}  +  { \beta }^{ - 1}  +  { \gamma }^{ - 1}

Answers

Answered by rishu6845
29

Answer:

 \bold{\alpha  ^{ - 1}  +  \beta  ^{ - 1}  +  \gamma  ^{ -1}  = 5}

Step-by-step explanation:

\bold{Given} =  >  \\  \alpha  \:  \beta  \: and \:  \gamma  \: are \: zeroes \: of \: polynomial \\ 6 {x}^{3}  \:  +  \: 3 {x}^{2}  \:  - 5x \:  + 1

\bold{To \: find \:}  =  >  \\ value \: of \: ( { \alpha }^{ - 1}  +  \beta ^{ - 1}  \:  +  { \gamma }^{ - 1}  \: )

\bold{Concept \: used }=  >  \\ if \:  \alpha  \:  \beta  \: and \:  \gamma  \: are \: zeroes \: of \: any \: cubic \: polynomial \: then

 \alpha  +  \beta  +  \gamma  =  -  \dfrac{coefficient \: of \:  {x}^{2} }{coefficient \: of \:  {x}^{3} }

 \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \dfrac{coefficient \: of \: x}{coefficien t\: of \:  {x}^{3} }

 \alpha  \beta  \gamma  =  -  \dfrac{constant \: term}{coefficient \: of \:  {x}^{3} }

\bold{Solution} =  >  \\ 6 {x}^{3}  \:  + 3 {x}^{2}  - 5x + 1

 \alpha  +  \beta  +  \gamma  =    - \dfrac{coefficient \: of \:  {x}^{2} }{coefficient \: of \:  {x}^{3} }

 =  >  \alpha   +  \beta  +  \gamma  =  -  \dfrac{3}{6}

 =  >  \alpha  +  \beta  +  \gamma  =  -  \dfrac{1}{2}

 \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \dfrac{coefficient \: of \: x}{coefficient \: of \:  {x}^{3} }

 =  >  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \dfrac{ - 5}{6}

 \alpha \:   \beta \:   \gamma  =  -  \dfrac{constant \: term}{coefficient \: of \:  {x}^{3} }

 =  >  \alpha   \: \beta \: \gamma  =  -  \dfrac{1}{6}

now

 { \alpha }^{ - 1}  \:  +  { \beta }^{ - 1}  \:  +  { \gamma }^{ - 1}  =  \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }  +  \dfrac{1}{ \gamma }

 =  \dfrac{ \beta  \gamma  \:  +  \gamma  \alpha  \:  +  \alpha  \gamma }{ \alpha  \:  \beta   \: \gamma }

 =  \dfrac{  - \dfrac{ 5}{6} }{  - \dfrac{1}{6} }

 =  \: 5


Anonymous: Awesome :)
Answered by Anonymous
34

Correct Question:

If α, β, γ are zeroes of the polynomial 6x³ + 3x² - 5x + 1 then find the value of α⁻¹ + β⁻¹ + γ⁻¹.

Solution:

6x³ + 3x² - 5x + 1

Comparing the given polynomial with ax³ + bx² + cx + d, we get

  • a = 6
  • b = 3
  • c = - 5
  • d = 1

Product of zeroes = αβγ = - d / a = - 1 / 6

Sum of product of two zeroes taken at a time = αβ + βγ + γα = c / a = - 5 / 6

Now, α⁻¹ + β⁻¹ + γ⁻¹

α⁻¹ + β⁻¹ + γ⁻¹ = ( 1 / α ) + ( 1 / β ) + ( 1 / γ )

= ( βγ + γα + αβ ) / ( αβγ )

= ( αβ + βγ + γα ) / ( αβγ )

= ( - 5 / 6 ) ÷ ( - 1 / 6 )

= ( - 5 / 6 ) × ( - 6)

= 5

Therefore the value of α⁻¹ + β⁻¹ + γ⁻¹ is 5.

Similar questions