Math, asked by appaudel697, 5 months ago

If
 \alpha  +  \beta  = \pi \div 4then prove that
 \tan\alpha  +  \tan \beta  +  \tan \alpha  \tan \beta   = 1

Answers

Answered by ramansingham
0

Answer:

 \tan( \alpha  +  \beta ) =  \tan( \frac{\pi}{4} )

 \frac{ \tan( \alpha)  +  \tan( \beta )  }{1 -  \tan( \alpha ) \times  \tan( \beta  )  } = 1

 \tan( \alpha ) +  \tan( \beta ) = 1 -  \tan( \alpha ) \tan( \beta )

 \tan( \alpha ) +  \tan( \beta ) +  \tan( \alpha ) \tan( \beta ) = 1

Similar questions