if
and beta are the zeros of a quadratic polynomial f x is equal to a x square + bx + c then evaluate Alpha minus beta
Answers
Answered by
0
Final Answer :
Either α -β = √D/a or
-√D/a
Steps:
1) Given equation :
2)
3) (α-β)^2= D/a^2
=>α-β = √D/a. or -√D/a
where D = Discriminant = b^2 -4ac
Either α -β = √D/a or
-√D/a
Steps:
1) Given equation :
2)
3) (α-β)^2= D/a^2
=>α-β = √D/a. or -√D/a
where D = Discriminant = b^2 -4ac
Answered by
0
Answer:
Step-by-step explanation:
Final Answer :
Either α -β = √D/a or
-√D/a
Steps:
1) Given equation :
f(x) = a {x}^{2} + bx + c \\ \alpha + \beta = \frac{ - b}{a} \\ \alpha \beta = \frac{c}{a}
2)
{ (\alpha - \beta )}^{2} = {( \alpha + \beta )}^{2} - 4 \alpha \beta \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > { (\frac{ - b}{a} )}^{2} - 4 \frac{c}{a} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > \frac{ {b}^{2} - 4ac }{ {a}^{2} } \:
3) (α-β)^2= D/a^2
=>α-β = √D/a. or -√D/a
where D = Discriminant = b^2 -4ac
Similar questions