Math, asked by vaibhav553765, 10 days ago

If \alpha ,\beta are the roots of x^{2} +x+1=0, then \frac{\alpha }{\beta ^{2} } +\frac{\beta }{\alpha ^{2} } =?

Answers

Answered by anindyaadhikari13
34

\textsf{\large{\underline{Solution}:}}

Given equation:

\rm:\longmapsto {x}^{2} + x + 1 = 0

Comparing the equation with ax² + bx + c = 0, we get:

\rm:\longmapsto \begin{cases} \rm a = 1\\  \rm b = 1 \\ \rm c = 1\end{cases}

α and β be the roots of this equation.

Therefore:

 \rm: \longmapsto \alpha  +  \beta  =  \dfrac{ - b}{a}  =  - 1

 \rm: \longmapsto \alpha \beta  =  \dfrac{c}{a}  =1

Now, we will find the required value.

 \rm =  \dfrac{ \alpha }{ { \beta }^{2} }  +  \dfrac{ \beta }{ { \alpha }^{2} }

LCM of α² and β² is α²β². Therefore:

 \rm =  \dfrac{ { \alpha }^{3} +  { \beta }^{3} }{  { \alpha }^{2} { \beta }^{2} }

As we know that:

 \rm: \longmapsto {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)

 \rm: \longmapsto  {x}^{3} +  {y}^{3}  =  {(x + y)}^{3} - 3xy(x + y)

Therefore, the fraction becomes:

 \rm =  \dfrac{ {( \alpha +  \beta ) }^{3} - 3 \alpha  \beta ( \alpha  +  \beta ) }{  (\alpha \beta )^{2}  }

Now substitute the value in the expression, we get:

 \rm =  \dfrac{ {( - 1) }^{3} - 3 \times 1 \times ( - 1) }{1^{2}  }

 \rm =  \dfrac{ - 1 + 3}{1}

 \rm =2

Therefore:

 \rm: \longmapsto\dfrac{ \alpha }{ { \beta }^{2} }  +  \dfrac{ \beta }{ { \alpha }^{2} }  = 2

Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

1. Relationship between zeros and coefficients (Quadratic Polynomial).

Let f(x) = ax² + bx + c and let α and β be the zeros of f(x).

Therefore:

\rm\implies\alpha+\beta=\dfrac{-b}{a}

\rm\implies\alpha\beta=\dfrac{c}{a}

2. Relationship between zeros and coefficients (Cubic Polynomial)

Let f(x) = ax³ + bx² + cx + d and let α, β and γ be the zeros of f(x).

Therefore:

\rm\implies \alpha+\beta+\gamma=\dfrac{-b}{a}

\rm\implies \alpha\beta+\beta\gamma+\alpha\gamma=\dfrac{c}{a}

\rm\implies \alpha\beta\gamma=\dfrac{-d}{a}

Similar questions