Math, asked by BrainlyHelper, 1 year ago

If  {\alpha} {\beta} are the zeros of the polynomial  f(x)=ax^{2}+bx+c ,then  \frac{1}{\alpha^{2}}+ \frac{1}{\beta^{2}} =
(a)  \frac{b^{2} -2ac} {a^{2}}
(b)  \frac{b^{2} -2ac} {c^{2}}
(c)  \frac{b^{2} +2ac} {a^{2}}
(d)  \frac{b^{2} +2ac} {c^{2}}

Answers

Answered by nikitasingh79
3

SOLUTION :

The correct option is (b) : (b² - 2ac)/c²

Given : α  and β are the zeroes of the  polynomial f(x) = ax² + bx + c .

Sum of the zeroes = −coefficient of x / coefficient of x²

α + β  = -b/a ………………….(1)

Product of the zeroes = constant term/ Coefficient of x²

αβ = c/a  ……………………(2)

Given : 1/α²  + 1/β²

= (1/α  + 1/β)² - 2/αβ

[By using the identity : a² + b² =  (a + b)² - 2ab]

= ((α + β)/αβ)² - 2/αβ

= ((-b/a)/c/a)² - 2/( c/a)

[From eq 1 & 2]

=( - b/a × a/c)² - 2 × a/c

= (- b/c)² - 2a/c

= b² / c² - 2a/c

1/α²  + 1/β² = (b² - 2ac)/c²

Hence, the value of 1/α²  + 1/β² is  (b² - 2ac)/c² .

HOPE THIS ANSWER WILL HELP YOU..

Answered by sanjaykumar1810
0
(b)is right answer ....
Similar questions
Math, 1 year ago