Math, asked by salon62, 9 days ago

If
 \alpha  = sin^{ - 1} (cos(sin^{ - 1}x ) \: and \:  \beta  = cos^{ - 1} (sin(cos^{ - 1} x))
,then find
tan \alpha .tan \beta .

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

We have,

\tt{\alpha=sin^{-1}\big\{cos\big(sin^{-1}(x)\big)\big\}\,\,\,\,,\,\,\,\,\beta=cos^{-1}\big\{sin\big(cos^{-1}(x)\big)\big\}}

\sf{\implies\alpha=sin^{-1}\left\{cos\left(cos^{-1}(\sqrt{1-x^2})\right)\right\}\,\,\,\,,\,\,\,\,\beta=cos^{-1}\left\{sin\left(sin^{-1}(\sqrt{1-x^2})\right)\right\}}

\sf{\implies\alpha=sin^{-1}\left(\sqrt{1-x^2}\right)\,\,\,\,,\,\,\,\,\beta=cos^{-1}\left(\sqrt{1-x^2}\right)}

\sf{\implies\,sin(\alpha)=\sqrt{1-x^2}\,\,\,\,,\,\,\,\,cos(\beta)=\sqrt{1-x^2}}

\sf{\implies\,cos(\alpha)=x\,\,\,\,,\,\,\,\,sin(\beta)=x}

Now,

\sf{tan(\alpha)}\cdot\sf{tan(\beta)}

=\sf{\dfrac{sin(\alpha)}{cos(\alpha)}}\cdot\sf{\dfrac{sin(\beta)}{cos(\beta)}}

=\sf{\dfrac{\sqrt{1-x^2}}{x}}\cdot\sf{\dfrac{x}{\sqrt{1-x^2}}}

\sf{=1}

Similar questions