Math, asked by ethanfernandez, 8 months ago

If
 \alpha
and
 \beta
are the zeroes of a Polynomial x²-4
 \sqrt{3} x
+ 3 then find value of
 \alpha  +  \beta  -  \alpha  \beta

Answers

Answered by Anonymous
7

Given :-

 \longrightarrow \sf {x}^{2} - 4 \sqrt{3} x + 3

To Find :-

 \longrightarrow \sf Value  \: of \:  \alpha  +  \beta  -  \alpha  \beta

Solution :-

 \implies \sf \alpha  +  \beta  =  \frac{ - b}{a} \\  \\  \implies \sf \alpha  +  \beta  = \frac{  - ( - 4 \sqrt{3}) }{1} \\  \\  \implies \sf \alpha  +  \beta  = 4 \sqrt{3}

_______________________

  \implies \sf \alpha  \beta  =  \frac{c}{a}  \\  \\  \implies \sf \alpha  \beta  =  \frac{3}{1}  \\  \\  \implies \sf \alpha  \beta  = 3

Now

 \implies \alpha  +  \beta  -  \alpha  \beta  \\  \\  \implies\underline{\boxed{ \sf 4 \sqrt{3} - 3}}

Similar questions