Math, asked by dishajain400, 28 days ago

If \alpha
and
 \beta
are the zeroes of tge zeroes of the polynomial f (x) = x² - 5x +k such that
 \alpha  -  \beta  = 1
find the value of k ​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha , \beta  \: are \: the \: zeroes \: of \:  {x}^{2} - 5x + k

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  +  \beta  =  -  \: \dfrac{( - 5)}{1}  = 5

Also,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  \beta  = \dfrac{k}{1}  = k

Also, it is given that

\rm :\longmapsto\: \alpha   - \beta  = 1

On squaring both sides, we get

\rm :\longmapsto\: (\alpha   - \beta)^{2}   = 1

We know,

\underbrace{\boxed{ \tt{  {(x + y)}^{2} -  {(x - y)}^{2}  \:  =  \: 4xy}}}

So, using this property, we get

\rm :\longmapsto\: (\alpha +  \beta)^{2}    - 4 \alpha  \beta = 1

On substituting the values, we get

\rm :\longmapsto\: {5}^{2}  - 4k = 1

\rm :\longmapsto\: 25  - 4k = 1

\rm :\longmapsto\:   - 4k = 1 - 25

\rm :\longmapsto\:   - 4k =  - 24

\bf\implies \:k = 6

Additional Information :-

\rm :\longmapsto\: \alpha , \beta, \gamma   \: are \: the \: zeroes \: of \:  {ax}^{3} +  {bx}^{2} + cx + d, \: then

\underbrace{\boxed{ \tt{  \alpha  +  \beta  +  \gamma  =  -  \:  \frac{b}{a} \: }}}

\underbrace{\boxed{ \tt{  \alpha \beta   +  \beta  \gamma  +  \gamma   \alpha =  \:  \frac{c}{a} \: }}}

\underbrace{\boxed{ \tt{  \alpha  \beta \gamma  =  -  \:  \frac{d}{a} \: }}}

Similar questions