Math, asked by Progamers1001, 1 month ago

If \alpha and \beta are the zeroes of the polynomial ax^{2} + bx + c = 0, then what is the value of \alpha -\beta

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

 \red{\rm :\longmapsto\: \alpha , \:  \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c = 0}

We know,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{c}{a}

and

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  +  \beta  = -  \:  \dfrac{b}{a}

Now, Consider

\rm :\longmapsto\: \alpha -   \beta

can be rewritten as

\rm \:  =  \:    \sqrt{ {(\alpha  - \beta ) \: }^{2} }

\rm \:  =  \:  \sqrt{ {\alpha }^{2}  +  {\beta }^{2}  - 2\alpha \beta }

\rm \:  =  \:  \sqrt{ {\alpha }^{2}  +  {\beta }^{2} + 2\alpha \beta - 4\alpha \beta  }

\rm \:  =  \:  \sqrt{ {(\alpha  + \beta )}^{2}  - 4\alpha \beta }

\rm \:  =  \:  \sqrt{ {\bigg[ - \dfrac{b}{a} \bigg]}^{2}  - 4\bigg[\dfrac{c}{a} \bigg]}

\rm \:  =  \:  \sqrt{\dfrac{ {b}^{2} }{ {a}^{2} }  - \dfrac{4c}{a} }

\rm \:  =  \:  \sqrt{\dfrac{ {b}^{2}  - 4ac}{ {a}^{2} } }

\rm \:  =  \: \dfrac{ \sqrt{ {b}^{2}  - 4ac} }{a}

Hence,

\red{ \boxed{ \sf{ \: \: \alpha  - \beta  =  \: \dfrac{ \sqrt{ {b}^{2}  - 4ac} }{a}  \:  \:  \: }}}

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha\beta   +  \beta \gamma   +  \gamma \alpha   = \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions