Math, asked by jerrinp3, 2 months ago

If
 \alpha
and
 \beta
are zeroes of
5x {}^{2}  + 5x + 1
then find
 \alpha   { }^{ - 1}  +  \beta  {}^{ - 1}

Answers

Answered by Anonymous
1

 ★ {\pmb{\underline{\sf{Required \ Solution ... }}}} \\

As We know that  \alpha and  \beta are zeroes of  {\tt{ 5x^2 + 5x + 1 }} .

»Firstly, We've to Find the sum of the Zeroes of the Quadratic Polynomial as:

 \colon\implies{\tt{ \alpha + \beta = \dfrac{-b}{a} }} \\ \\ \colon\implies{\tt{ \cancel{ \dfrac{-5}{5} } = -1 }}

»Now, We should find the Product of the Zeroes of the Quadratic Polynomial as:

 \colon\implies{\tt{ \alpha  \beta = \dfrac{c}{a} }} \\ \\ \colon\implies{\tt{ \dfrac{1}{5}  }}

Now Finally, It's Time to get the value of the Desired Equation as well.

 \colon\implies{\tt{ \dfrac{1}{ \alpha } + \dfrac{1}{ \beta } }} \\ \\ \colon\implies{\tt{ \dfrac{ \alpha + \beta}{ \alpha \beta } }} \\ \\ \colon\implies{\tt{ \dfrac{-1}{ \dfrac{1}{5} } }} \\ \\ \colon\implies{\tt{ \dfrac{-5}{1} = -5 }} \\

Hence,

The value of  \alpha { }^{ - 1} + \beta {}^{ - 1} is  {\tt{ -5}} .

Similar questions