Math, asked by sannidhishetty026, 1 month ago

if
 \alpha
,
 \beta
are zeroes of the polynomial p(x)=5x²+5x+1 then find the value of
 \alpha    ^{2}  +  \beta  ^{2}

Answers

Answered by Intelligentcat
7

Given Equation :

  • p(x) = 5x² + 5x + 1

Have to find the value of the  {\sf{ \alpha ^{2} + \beta ^{2} }}

Here,

  • Coefficient of x² → 5
  • Coefficient of x = 5
  • Constant term = 1

Relation between zeroes and coefficients

 \textsf{Sum of  the Zeroes }

\longrightarrow\sf - {Coefficient \: of \:  x/Coefficient \: of \: x^{2}}

:\implies \sf{ \alpha + \beta =  \dfrac{- 5}{5}}\\ \\

:\implies \sf{ \alpha + \beta = - 1 }\\ \\

_________________________

\textsf{Product of  the Zeroes }

\longrightarrow\sf{Constant \:  Term/Coefficient \: of \: x^{2}}

:\implies \sf{ \alpha \times \beta =  \dfrac{1}{5} } \\ \\

Now,

First we going to use the algebraic identity :

\bullet\sf {a^{2} + b^{2} = ( a + b )^{2}  - 2ab} \\

(Putting values in the given Equation :

\rightarrow \sf \alpha ^{2} + \beta ^{2} \\ \\

(-1)² - (2 × (-1) × 1/5)

\rightarrow \sf  1 - \dfrac{2}{5} \\ \\

\rightarrow \sf \dfrac{5 -2}{5} \\ \\

\rightarrow \sf \dfrac{3}{5} \\ \\

Hence,

The value of α² + β² is :

{\boxed{\therefore{\sf{ \dfrac{3}{5}}}}} \\ \\

_________________________

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Answered by BrainlyRish
8

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀☆ GIVEN⠀ POLYNOMIAL  – p(x) =  5x² + 5x  + 1 :

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀The Cofficients of Polynomial p(x) =  5x² + 5x  + 1 :

  • The Cofficient of x² = 5
  • The Cofficient of x = 5
  • Constant term = 1

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀

Given that,

  •  \alpha\: \&  \:\beta are two zeroes of p(x) .

As, We know that ,

\bf{\underline {\star \: Sum \:of\:zeroes \::}}\\

  • \bf{ \alpha + \beta = \bigg( \dfrac{-(Cofficient \:of\:x^2)}{Cofficient \:of\:x}\bigg) }\\\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: known \: Cofficients\::}}\\

⠀⠀⠀⠀:\implies\sf { \alpha + \beta = \bigg( \dfrac{-5}{5}\bigg) }\\\\

⠀⠀⠀⠀:\implies\sf { \alpha + \beta = \bigg( \cancel {\dfrac{-5}{5}}\bigg) }\\\\

⠀⠀⠀⠀:\implies\bf { \alpha + \beta = -1 }\\\\

And,

As, We know that,

\bf{\underline {\star \: Product \:of\:zeroes \::}}\\

⠀⠀⠀⠀\bf{ \alpha \times \beta = \bigg( \dfrac{Constant\:Term}{Cofficient \:of\:x^2}\bigg) }\\\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: known \: Cofficients\::}}\\

:\implies\bf { \alpha \times \beta = \bigg( \dfrac{1}{5}\bigg) }\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀⠀Finding ⠀ \alpha ^{2} + \beta ^{2} .

:\implies\sf { \alpha^2 + \beta^2  }\\\\

As, We know that ,

  • Algebraic\:Indentity\::\:(a+b)^2 = a^2 + b^2 + 2ab

Or ,

  •   a^2 + b^2 = (a+b)^2 - 2ab

Then ,

⠀⠀⠀⠀:\implies\sf { \alpha^2 + \beta^2 = \bigg( \alpha + \beta\bigg)^2 - 2\alpha\beta }\\\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: Found \: Values \::}}\\

⠀⠀⠀⠀:\implies\sf { \alpha^2 + \beta^2 = \bigg( \alpha + \beta\bigg)^2 - 2\alpha\beta }\\\\

⠀⠀⠀⠀:\implies\sf { \alpha^2 + \beta^2 = \bigg( -1\bigg)^2 - 2\times \dfrac{1}{5} }\\\\

⠀⠀⠀⠀:\implies\sf { \alpha^2 + \beta^2 =  1 -  \dfrac{2}{5} }\\\\

⠀⠀⠀⠀:\implies\sf { \alpha^2 + \beta^2 =   \dfrac{5 - 2}{5} }\\\\

⠀⠀⠀⠀:\implies\bf { \alpha^2 + \beta^2 =    \dfrac{3}{5} }\qquad \longrightarrow\bf{AnswEr}\\\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions