Math, asked by Rajarsee, 2 months ago

If
b =  {a}^{ \frac{1}{3}  } - {a}^{ \frac { - 1}{3} }
then show that
b ^{3}  + 3b = a -  \frac{1}{a}

Answers

Answered by ydeepakyadava
0

Step-by-step explanation:

If

b = {a}^{ \frac{1}{3} } - {a}^{ \frac { - 1}{3} }

then show that

b ^{3} + 3b = a - \frac{1}{a}

If

b = {a}^{ \frac{1}{3} } - {a}^{ \frac { - 1}{3} }

then show that

b ^{3} + 3b = a - \frac{1}{a}

If

b = {a}^{ \frac{1}{3} } - {a}^{ \frac { - 1}{3} }

then show that

b ^{3} + 3b = a - \frac{1}{a}

If

b = {a}^{ \frac{1}{3} } - {a}^{ \frac { - 1}{3} }

then show that

b ^{3} + 3b = a - \frac{1}{a}

ex]b ^{3} + 3b = a - \frac{1}{a} [/tex]

Similar questions