Math, asked by ShaniaRoy, 1 year ago

If  \bf {2}^{x} =  {4}^{y} =  {8}^{z}
and  \bf  \dfrac{1}{2x} +  \dfrac{1}{4y} +  \dfrac{1}{4z}  = 4 , find the

value of x.
____________________________
____________________________
____________________________
____________________________
No Spmming ​

Answers

Answered by BrainlyWriter
88

\Large\bold{\underline{\underline{Answer:-}}}

\Large\bold{\boxed{\frac{7}{16}}}

\rule{200}{2}

\bf\small\bold{\underline{\underline{Step-By-Step\:Explanation:-}}}

  \tt  {2}^{x} =  {4}^{y} =  {8}^{z}

Equating all the bases

4 →→2²

8 →→2³

  \tt  {2}^{x} =  {({2}^{2})}^{y} =  {({2}^{3})}^{z}

  \tt  {2}^{x} =  {2}^{2y}=  {2}^{3z}

✭By Law of exponents in above \bf (a^m)^n = a^{mn}

⇒ x = 2y = 3z

✭ Now bases are equal, Therefore Exponents must be equal ✭

⇒ x = 2y and x = 3z

✭We need to find values of y and z in terms of x✭

⇒ x = 2y

⇒ x/2 = y

⇒ y = x/2

So y = x/2

⇒ x = 3z

⇒ x/3 = z

⇒ z = x/3

So, z = x/3

 \tt  \dfrac{1}{2x} +  \dfrac{1}{4y} +  \dfrac{1}{4z}  = 4

✭Substituting the value of y and z in above equation✭

 \large \displaystyle  \frac{1}{2x} +  \frac{1}{4( \frac{x}{2})} +  \frac{1}{4( \frac{x}{3})}  = 4

 \large \displaystyle  \frac{1}{2x} +  \frac{1}{2(x)} +  \frac{1}{\frac{4x}{3}}  = 4

 \large \displaystyle  \frac{1}{2x} +  \frac{1}{2x} +  \frac{1}{\frac{4x}{3}}  = 4

 \large \displaystyle  \frac{1}{2x} +  \frac{1}{2x} +1( \frac{3}{4x}) = 4

 \large \displaystyle  \frac{1}{2x} +  \frac{1}{2x} +\frac{3}{4x} = 4

 \large \displaystyle  \frac{2}{2x} +\frac{3}{4x} = 4

Taking LCM in LHS

 \large \displaystyle  \frac{2(2)}{2x(2)} +\frac{3}{4x} = 4

 \large \displaystyle  \frac{4}{4x} +\frac{3}{4x} = 4

 \large \displaystyle  \frac{7}{4x} = 4

 \large \displaystyle  \frac{4x}{7} = \frac{1}{4}

[Reciprocal on both sides]

 \large \displaystyle 4x = \frac{1}{4} \times 7

 \large \displaystyle 4x = \frac{7}{4}

 \large \displaystyle x = \frac{7}{4} \div 4

 \large \displaystyle x = \frac{7}{4} \times  \frac{1}{4}

 \large \displaystyle x = \frac{7}{16}

Hence, value of x is 7/16

Answered by Anonymous
63

Step-by-step explanation:

Given that

2^x=4^y=8^z

2^x=(2^2)^y=(2^3)^z

we know (a^m)^n=a^mn so,

2^x=2^2y=2^3z

all sides bases same so cancel

we get x=2y=3z

x=2y

  • x/2=y

x=3z

  • x/3=z

now here

1/2x+1/4y+1/4z=4........(R)

to find X value

put y, z values in equation (R)

1/2x+1/4x/2+1/4x/3=4

1/2x+2/4x+3/4x=4

(2+2+3)/4x=4

7/4x=4

7=16x

x=7/16

therefore the value of x is 7/16.

Similar questions