If
then show that
Answers
Answered by
31
Question:
$olution:
Answered by
1
Step-by-step explanation:
Question:
If \: \: \bf tan \; A = \dfrac{1- cos B}{sin \; B}IftanA=
sinB
1−cosB
then, \: \bf{2A=tan B}then,2A=tanB
$olution:
\bf \: tan \: A = \frac{ \: 1 - cos \: B \: }{sin \: B \: }tanA=
sinB
1−cosB
\bf \: = > tan \: A \: = \frac{ \: 2 \: {sin }^{2 \: }( \frac{B}{2} )}{ \: 2 \: sin \: ( \frac{B}{2} ) \: cos \: ( \frac{B}{2} ) \: }=>tanA=
2sin(
2
B
)cos(
2
B
)
2sin
2
(
2
B
)
\bf = > tan \: A \: = \: tan \: (\frac{B}{2} )=>tanA=tan(
2
B
)
\bf \: tan \: 2A = \frac{ \: 2 \: tan \: A \: }{ \: 1 - {tan}^{2} A \: } = \frac{ \: 2 \: tan \: (\frac{B}{2}) \: }{ \: 1 - \: {tan}^{2} (\frac{B}{2} ) \: }tan2A=
1−tan
2
A
2tanA
=
1−tan
2
(
2
B
)
2tan(
2
B
)
\bf {.}^{ .}. \: \: tan \: 2A = tan \: B.
.
.tan2A=tanB
Similar questions