Math, asked by Anonymous, 1 month ago

If
\bf tan \; A = \dfrac{1- cos B}{sin \; B}
then show that
\bf{2A=tan B}

Answers

Answered by TrueRider
31

Question:

If  \: \: \bf tan \; A = \dfrac{1- cos B}{sin \; B}

then,  \: \bf{2A=tan B}

$olution:

 \bf \: tan \:  A =  \frac{ \: 1 - cos \: B \: }{sin \: B \: }

 \bf \: =  > tan \: A \:  =   \frac{ \: 2 \:  {sin }^{2 \: }(  \frac{B}{2} )}{ \: 2 \: sin \: ( \frac{B}{2} ) \: cos \: ( \frac{B}{2} ) \: }

 \bf  =  > tan \: A \:  =  \: tan \:  (\frac{B}{2} )

 \bf \: tan \: 2A =  \frac{ \: 2 \: tan \: A \: }{ \: 1 -  {tan}^{2} A \: }  =  \frac{ \: 2 \: tan \:  (\frac{B}{2})  \: }{ \: 1 -  \:  {tan}^{2}  (\frac{B}{2} ) \: }

 \bf {.}^{ .}. \:  \:  tan  \: 2A = tan \:  B

Answered by basithchappals
1

Step-by-step explanation:

Question:

If \: \: \bf tan \; A = \dfrac{1- cos B}{sin \; B}IftanA=

sinB

1−cosB

then, \: \bf{2A=tan B}then,2A=tanB

$olution:

\bf \: tan \: A = \frac{ \: 1 - cos \: B \: }{sin \: B \: }tanA=

sinB

1−cosB

\bf \: = > tan \: A \: = \frac{ \: 2 \: {sin }^{2 \: }( \frac{B}{2} )}{ \: 2 \: sin \: ( \frac{B}{2} ) \: cos \: ( \frac{B}{2} ) \: }=>tanA=

2sin(

2

B

)cos(

2

B

)

2sin

2

(

2

B

)

\bf = > tan \: A \: = \: tan \: (\frac{B}{2} )=>tanA=tan(

2

B

)

\bf \: tan \: 2A = \frac{ \: 2 \: tan \: A \: }{ \: 1 - {tan}^{2} A \: } = \frac{ \: 2 \: tan \: (\frac{B}{2}) \: }{ \: 1 - \: {tan}^{2} (\frac{B}{2} ) \: }tan2A=

1−tan

2

A

2tanA

=

1−tan

2

(

2

B

)

2tan(

2

B

)

\bf {.}^{ .}. \: \: tan \: 2A = tan \: B.

.

.tan2A=tanB

Similar questions