Math, asked by Anonymous, 1 day ago

If :
 \boxed{ \begin{array}{cc}\sf   \bull  \:   x = asec \theta \: cos \phi \\  \\   \sf\bull \: y = bsec \theta  sin \phi \:  \:  \\  \\  \sf \bull \: z = ctan \theta \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \end{array}}

Then find the value of :
  \boxed{ \sf \:  \dfrac{ {x}^{2} }{ {a}^{2}  } +  \dfrac{ {y}^{2} }{ {b}^{2} } }
Please answer with explanation. :) ​

Answers

Answered by Starrex
7

Aиѕωєr —

  • \tt{ \red{\leadsto} \boxed{ \:  \:  \:  \left(1+\dfrac{z^2}{c^2}\right)   \:  \: }}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Giνєи —

      \qquad{ \large {\maltese \: }  \small {\boxed{ \begin{array}{cc}   \sf{\bull \: x  = a  \: sec \theta cos \theta } \\  \sf{ \bull \: y = b \: sec \theta sin \theta \: } \\  \sf{ \bull \: z = c \: tan \theta  \:  \:  \:  \:  \:  \:  \:  \: } \\  \end{array}}}}

Tσ Fiиd —

  • \sf{\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}\right)}

Sσℓυтiσи –

We have :

 \quad\tt{\longrightarrow  x = a\: sec\theta cos\theta }

 \quad\tt{\longrightarrow \dfrac{x}{a}=sec\theta cos \theta }

On squaring both sides we get :

 \quad\tt{\longrightarrow  \dfrac{x^2}{a^2}=sec^2 \theta cos^2 \theta \qquad  \:\:\:\:\:\:\:\:\:\:\: \cdots\cdots ( 1 ) }

Now :

 \quad\tt{\longrightarrow  y = b \: sec \theta sin \theta }

 \quad\tt{\longrightarrow  \dfrac{y}{b}= sec\theta sin\theta }

On squaring both sides :

 \quad\tt{\longrightarrow \dfrac{y^2}{b^2}=sec^2 \theta sin^2 \theta  \qquad  \:\:\:\:\:\:\:\:\:\:\: \cdots \cdots ( 2 )}

✪ Now :

 \quad\tt{\longrightarrow z = c \: tan \theta  }

 \quad\tt{\longrightarrow  \dfrac{z}{c}=tan\theta }

On squaring both sides :

 \quad\tt{\longrightarrow \dfrac{z^2}{c^2} = tan^2 \theta \qquad  \:\:\:\:\:\:\:\:\:\:\:\cdots \cdots ( 3 ) }

ㅤ✪ On adding equation ( 1 ) and ( 2 ) :

 \quad\tt{\longrightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2 }=sec^2 \theta cos^2 \theta + sec^2 \theta sin^2\theta  }

 \quad\tt{\longrightarrow  \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2 }=sec^2 \theta ( cos^2 \theta + sin^2 \theta )\qquad  \qquad\:\:\:\:\:\:\:\:\:\:\: \bigg\lgroup cos ^2 \theta + sin^2 \theta = 1 \bigg\rgroup}

 \quad\tt{\longrightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2 }= sec ^2 \theta \times 1 }

 \quad\tt{\longrightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2 }= sec^2 \theta }

 \quad\tt{\longrightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2 }= tan^2 \theta +1 \qquad\qquad  \:\:\:\:\:\:\:\:\:\:\:\bigg\lgroup sec^2 \theta = tan^2 \theta +1 \bigg\rgroup }

Using equation ( 3 ) :

 \quad\tt{\longrightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2 }=\dfrac{z^2}{c^2}+1 }

 \quad{\pmb{\tt{\longrightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2 }=1+\dfrac{z^2}{c^2}}} }

❝ Hєиcє Sσℓved ❞

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by talpadadilip417
3

Step-by-step explanation:

  \[ \begin{array}{l} \color{green} \tt \: Given \\ \\  \color{red}\tt  \[ x=a \sec \theta \cos \phi, y=b \sec \theta \sin \phi \]  \\  \\  \color{orange}\text{To find the value of \:  \:  \(  \tt\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}} \)}  \\  \\  \tt \:\color{navy} Simplifying \\   \\\color{maroon} \tt \: x=a \sec \theta \cos \phi, y=b \sec \theta \sin \phi \\  \\   \color{purple}\tt\text { so }, \dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=\dfrac{a^{2} \sec ^{2} \theta \cos ^{2} \phi}{a^{2}}+\dfrac{b^{2} \sec ^{2} \theta \sin ^{2} \phi}{b^{2}} \\ \\  \color{blue}\tt =\sec ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right) \\ \\  \color{darkorange}\tt =\sec ^{2} \theta \end{array} \]

Similar questions