Math, asked by Anonymous, 4 months ago

If :
{ \boxed{ \bf{( \tan {}^{ - 1} x) {}^{2}  + ( \cot {}^{ - 1} x) {}^{2}  =  \frac{5 \pi {}^{2} }{8} \:  then \: find \: x.}}}
⚠︎ Kindly Don't spamm⚠︎
– Non-copied Answer
– Well-explained Answer

​​​

Answers

Answered by Sizzllngbabe
37

Given:-

{ \bf{( \tan {}^{ - 1} x) {}^{2} + ( \cot {}^{ - 1} x) {}^{2} = \frac{5 \pi {}^{2} }{8}}}

To find:-

  • The value of x.

 \huge{ \sf{ \underline{ \underline{ \color{goldenrod}{Solution:- }}}}}

 \sf \:(tan ^{ - 1} x)^{2} + ( \frac{\pi}{2}  -  {tan}^{ - 1}x)^{2}  =  \frac{5 {\pi}^{2} }{8}    \:    \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \: [tan ^{ - 1}  + cot ^{ - x}  =  \frac{\pi}{2}]}

 \bf \:  P =  {tan}^{ - 1} x

  \boxed{ \red {\bf \: ( {P})^{2}  + ( \frac{\pi}{2}  -  {P})^{2}  =  \frac{ {5\pi}^{2} }{8} }}

  \bf \: {P}^{2}  + ( \frac{\pi ^{2} }{4}  +  {P}^{2}  - 2\pi \: l) =  \frac{ {5\pi}^{2} }{8}  \:  \:  \:  \:  \:  \:  \:  \: {\boxed{(a + b) ^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}}

 \bf \: 2P ^{2}  +  \frac{ {\pi}^{2} }{4}  -  \frac{5 {\pi}^{2} }{8}  - 2\pi \: l = 0

 \bf \: 2P ^{2}   -   \frac{ {5\pi}^{2} }{4}   +  \frac{x{\pi}^{2} }{8}  - \pi \: l = 0

 \huge \purple \star  \:  \small{\boxed{2 P^{2}  -  \frac{ {3x}^{2} }{8}  - \pi \:P = 0}}

 \huge \pink \dag  \:  \small \boxed{16 {P}^{2}  - 3\pi - 8\pi \: P = 0}

 \boxed{16P ^{2}  - 12\pi{P}+ 4\pi{P} - 3 {\pi}^{2}  = 0}

 \boxed{ \sf{4P(4P - 3\pi) + \pi(4P - 3\pi) = 0}}

 \red{ \boxed{  \bf{(4P + x)(4P - 3\pi)}}}

  \large  \color{goldenrod}{ \boxed{{P =  \frac{ - \pi}{4} and \: P =  \frac{3\pi}{4} }}}

 \bf \: if \: P =  \tan ^{ - 1} x =  \frac{3\pi}{4}

 \large{ \color{aqua}{ \boxed{ \sf{x = tan \frac{3\pi}{4} }}}}

 \large{ \color{maroon}{ \boxed{ \sf{x = tan( \frac{\pi}{2}  +  \frac{\pi}{4})}}}}

 \large{ \color{blue}{{ \boxed{x =  - cot \frac{\pi}{4}}}}}

 \huge{ \red{ \boxed{ \tt{x =  - 1}}}}

Hence the value of x is -1.

Answered by BrainlyPopularman
36

GIVEN :

  \\ \implies\bf(\tan^{-1} x)^{2} + (\cot^{ - 1} x)^{2} = \dfrac{5 \pi^{2} }{8}\\

TO FIND :

• Value of 'x' = ?

SOLUTION :

  \\ \implies\bf(\tan^{-1} x)^{2} + (\cot^{ - 1} x)^{2} = \dfrac{5 \pi^{2} }{8}\\

• We know that –

  \\ \implies \large \red{ \boxed{\bf\tan^{-1} x +\cot^{ - 1} x= \dfrac{\pi}{2}}}\\

• So that –

  \\ \implies\bf \left( \dfrac{\pi}{2}  - \cot^{-1} x \right)^{2} + (\cot^{ - 1} x)^{2} = \dfrac{5 \pi^{2} }{8}\\

• Now let's put \bf\cot^{-1} x = t

  \\ \implies\bf \left( \dfrac{\pi}{2}  -t\right)^{2} + (t)^{2} = \dfrac{5 \pi^{2} }{8}\\

  \\ \implies\bf \dfrac{\pi ^{2} }{4}   + t^{2}  - 2(t) \left(\dfrac{\pi}{2} \right)+ (t)^{2} = \dfrac{5 \pi^{2} }{8}\\

  \\ \implies\bf \dfrac{\pi ^{2} }{4}   + t^{2}  -t\pi+t^{2} = \dfrac{5 \pi^{2} }{8}\\

  \\ \implies\bf \dfrac{\pi ^{2} }{4}   +2t^{2}  -t\pi -  \dfrac{5 \pi^{2} }{8} = 0\\

  \\ \implies\bf \dfrac{2\pi ^{2} - 5 {\pi}^{2}}{8}+2t^{2}  -t\pi= 0\\

  \\ \implies\bf  - \dfrac{ 3 {\pi}^{2}}{8}+2t^{2}  -t\pi= 0\\

  \\ \implies\bf 16 {t}^{2}-8t\pi-3 {\pi}^{2}= 0\\

  \\ \implies\bf 16 {t}^{2}-12t\pi + 4t \pi-3 {\pi}^{2}= 0\\

  \\ \implies\bf 4t(4t - 3 \pi) +  \pi(4t - 3 \pi)= 0\\

  \\ \implies\bf (4t + \pi)(4t - 3 \pi)= 0\\

  \\ \implies\bf t =  -\dfrac{\pi}{4} ,\dfrac{3\pi}{4}\\

• Now replace 't' –

  \\ \implies\bf \cot^{-1} x=  -\dfrac{\pi}{4} ,\dfrac{3\pi}{4}\\

  \\ \implies\bf x= cot \left( -\dfrac{\pi}{4} \right),cot \left(\dfrac{3\pi}{4} \right)\\

  \\ \implies\bf x= - 1, - 1\\

  \\ \large\implies{\boxed{\bf x= - 1}}\\

Hence , The value of 'x' is -1 .

Similar questions