Math, asked by Divya455, 5 months ago

If \bullet a=3+\sqrt{8}

Then find

\bullet \bigg(a{}^{2}+\dfrac{1}{a{}^{2}}\bigg)

Answers

Answered by Anonymous
55

To Find :-

• Value of \sf \bigg(a{}^{2}+\dfrac{1}{a{}^{2}}\bigg) =?

Solution :-

Given,

\sf a=3+\sqrt{8}

\sf Then

\sf\bigg(\dfrac{1}{a}\bigg)=\dfrac{1}{3+\sqrt{8}}\\\\

\sf:\implies \dfrac{1}{3+\sqrt{8}}\times \dfrac{(3-\sqrt{8})}{(3-\sqrt{8})}\\\\

\sf:\implies \dfrac{1}{a}=\dfrac{3-\sqrt{8}}{(3){}^{2}-(\sqrt{8}){}^{2}}\\\\

\sf:\implies \dfrac{1}{a}=\dfrac{3-\sqrt{8}}{9-8}\\\\

\sf:\implies \dfrac{1}{a}= 3-\sqrt{8}\\\\

\sf Now

\sf \bigg(a{}^{2}+\dfrac{1}{a{}^{2}}\bigg)\\\\

\sf:\implies \bigg(a+\dfrac{1}{a}\bigg){}^{2}=a{}^{2}+\dfrac{1}{a{}^{2}}+2\\\\

 \sf:\implies \bigg(a+\dfrac{1}{a}\bigg){}^{2}=( 3+\cancel{\sqrt{8}}+3-\cancel{\sqrt{8}}){}^{2}\\\\

 \sf:\implies \bigg(a+\dfrac{1}{a}\bigg){}^{2}= (6){}^{2}=36\\\\

 \sf:\implies 36=a{}^{2}+\dfrac{1}{a{}^{2}}+2\\\\

\sf:\implies 36-2=a{}^{2}+\dfrac{1}{a{}^{2}}\\\\

 \sf:\implies 34=a{}^{2}+\dfrac{1}{a{}^{2}}\\\\

 \sf:\implies a{}^{2}+\dfrac{1}{a{}^{2}}= 34 \\\\

\boxed {\sf {\purple {Required \ value \ is\ 34}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


Anonymous: Great
tapatidolai: Brilliant ♡
Answered by RISH4BH
196

\large{\underline{\underline{\red{\tt{\purple{\leadsto } GiveN:-}}}}}

\sf \qquad \green{\bullet} \: Value \ of \ a \ is \ 3+\sqrt{8}

\large{\underline{\underline{\red{\tt{\purple{\leadsto } To\:FinD:-}}}}}

\sf \qquad \green{\bullet}\: The \ value \ of \ \bigg\lgroup a^2 + \dfrac{1}{a^2}\bigg\rgroup

\large{\underline{\underline{\red{\tt{\purple{\leadsto } AnsweR:-}}}}}

\sf Given \ that :-

\tt:\implies a =  3 + \sqrt{8} \\\\\tt:\implies \dfrac{1}{a}= \dfrac{1}{3+\sqrt{8}}  \\\\\tt:\implies\dfrac{1}{a}=\bigg\lgroup \dfrac{(3-\sqrt{8})}{(3+\sqrt{8})(3-\sqrt{8})}\bigg\rgroup    \\\\\tt:\implies\dfrac{1}{a}=\bigg\lgroup \dfrac{3-\sqrt{8}}{(3)^2-(\sqrt8)^2}\bigg\rgroup  \\\\\underline{\boxed{\red{\tt\longmapsto \dfrac{1}{a}=3-\sqrt{8} }}}

\rule{200}2

\underline{\pink{\sf On \ adding \ them \ we \ have :- }}

\tt:\implies a + \dfrac{1}{a}= 3 + \sqrt8 + 3 -\sqrt8 \\\\\tt:\implies a + \dfrac{1}{a} = 6 \\\\\tt:\implies \bigg\lgroup a + \dfrac{1}{a}\bigg\rgroup ^2 = 6^2\\\\\tt:\implies  \bigg\lgroup a^2 + \dfrac{1}{a^2}+2 \times  a \times \dfrac{1}{ a } \bigg\rgroup = 36 \\\\\tt:\implies </p><p> \bigg\lgroup a^2 + \dfrac{1}{a^2}\bigg\rgroup + 2 = 36 \\\\\tt:\implies  \bigg\lgroup a^2 + \dfrac{1}{a^2}\bigg\rgroup = 36 - 2 \\\\\underline{\boxed{\red{\tt\longmapsto  \bigg\lgroup a^2 + \dfrac{1}{a^2}\bigg\rgroup=34 }}}

\boxed{\green{\bf \pink{\dag}\: Hence \ the \ required \ answer \ is \ 34 . }}


BrainlyPopularman: Keep it up
tapatidolai: Awesome :D
RISH4BH: Thanks :p
Similar questions