Math, asked by pavyasingh, 19 days ago

If

 {cos}^{ - 1} x + {cos}^{ - 1} y + {cos}^{ - 1} z > 3\pi \\

find the value of x(y + z) + y(z + x) + z(x + y)

Answers

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {cos}^{ - 1}x + {cos}^{ - 1}y + {cos}^{ - 1}z = 3\pi \\

We know,

\rm \: {cos}^{ - 1}x \: is \: defined \: when \: x \:  \in \: [ - 1, \: 1] \\

That means,

\rm\implies \: - 1 \leqslant x \leqslant 1 \\

\rm\implies \:0 \leqslant {cos}^{ - 1}x \leqslant \pi \\

Similarly,

\rm\implies \:0 \leqslant {cos}^{ - 1}y \leqslant \pi \\

and

\rm\implies \:0 \leqslant {cos}^{ - 1}z \leqslant \pi \\

So, above given expression can be rewritten as

\rm \: {cos}^{ - 1}x + {cos}^{ - 1}y + {cos}^{ - 1}z = \pi + \pi + \pi \\

\rm\implies \:{cos}^{ - 1}x = \pi \: \rm\implies \:x = cos\pi \: \rm\implies \:x = -  1 \\

Also,

\rm\implies \:{cos}^{ - 1}y = \pi \: \rm\implies \:y = cos\pi \: \rm\implies \:y = -  1 \\

Also,

\rm\implies \:{cos}^{ - 1}z = \pi \: \rm\implies \:z = cos\pi \: \rm\implies \:z = -  1 \\

So, we have

\rm \: x = 1, \:  \:  \: y = 1, \:  \:  \: z = 1 \:  \\

Now, Consider

\rm \: x(y + z) + y(z + x) + z(x + y) \\

So, on substituting the values of x, y and z, we get

\rm \: =  \:  - 1( - 1 - 1) - 1( - 1 - 1) - 1( - 1 - 1) \\

\rm \: =  \: 2 + 2 + 2 \\

\rm \: =  \:6 \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: x(y + z) + y(z + x) + z(x + y)  = 6 \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y =  {sin}^{ - 1}(sinx) & \sf  x \:  \: if -\dfrac{\pi  }{2} \leqslant x \leqslant \dfrac{\pi  }{2}\\ \\ \sf y =  {cos}^{ - 1}(cosx) & \sf x \:  \: if \: 0 \leqslant y \leqslant \pi \\ \\ \sf y =  {tan}^{ - 1}(tanx) & \sf x \:  \: if \:  - \dfrac{\pi  }{2} < x < \dfrac{\pi  }{2}\\ \\ \sf y =  {cosec}^{ - 1}(cosecx) & \sf x \:  \: if \: x \:  \in \: \bigg[ - \dfrac{\pi}{2}, \: \dfrac{\pi  }{2}\bigg] -  \{0 \}\\ \\ \sf y =  {sec}^{ - 1}(secx) & \sf x \:  \: if \: x \:  \in \: [0, \: \pi] \:   -  \: \bigg\{\dfrac{\pi  }{2}\bigg\}\\ \\ \sf y =  {cot}^{ - 1}(cotx) & \sf x \:  \: if \:  \:  \in \: \bigg( -  \dfrac{\pi  }{2} , \dfrac{\pi  }{2}\bigg) -  \{0 \} \end{array}} \\ \end{gathered} \\

Answered by Missincridedible
25

answer \: by \: missincrededible

Attachments:
Similar questions