Math, asked by Raj4128, 1 year ago

If ,
cos \alpha  + sec \alpha  = 2 \\  \\ find \: the \: value \: of \: \\   {cos \alpha }^{2018}  +  {sec \alpha }^{2018}

Pls give me correct ans ☺️

Don't spam

Answers

Answered by Anonymous
42
Hey !!!! ^_^


Here is your answer

⬇️⬇️⬇️⬇️⬇️⬇️


cos \alpha  + sec \alpha  = 2 \\ \\  cos \alpha  +  \frac{1}{cos \alpha }  = 2 \\  \\   \frac{ {cos \alpha  }^{2}  + 1}{cos \alpha }  = 2 \\  \\  {cos \alpha }^{2}  + 1 = 2cos \alpha  \\  \\  {cos \alpha }^{2}   - 2cos \alpha  + 1 = 0 \\ cos \alpha  = 1 \\  \\ then \:  \:  \frac{1}{cos \alpha }  = sec \alpha  = 1 \\    \\ then \\  {cos \alpha }^{2018}  +  {sec \alpha }^{2018}  \\  \\  = 1 + 1 \\  = 2


I HOPE IT WILL HELP You

Thank you ☺️✌️

Raj4128: thnq mam
Anonymous: thnx for brainliest
Anonymous: plz don't say hii or hlo here ....if u need help then inbox
Answered by Anonymous
22

\bold{ \huge{ \color{red}{ \fbox{ \ulcorner{welcome}}}}}






\bold{ \huge{ \color{blue}{ \fbox{ \ulcorner{answer \:  \urcorner}}}}}


\bold{ \huge{ \color{red}{ \fbox{ \ulcorner{dhanyavaad}}}}}
Attachments:

Raj4128: thnx
Anonymous: welcome
Anonymous: Don't unnecessary Comment
Anonymous: Chat in inbox
Similar questions