If , then is equal to
(a)1
(b)0
(c)3
(d)4
Answers
SOLUTION :
The correct option is (b) : 0
Given : cos θ = ⅔
cos θ = base/ hypotenuse = ⅔
Base = 2, hypotenuse = 3
In right angle ∆ ,
Hypotenuse² = (perpendicular)² + (Base)²
[By Pythagoras theorem]
3² = (perpendicular)² + 2²
9 = (perpendicular)² + 4
perpendicular² = 9 - 4 = 5
perpendicular = √5
tan θ = perpendicular/base = √5/2
tan θ = √5/2
sec θ = 1/cos θ = 1/(2/3) = 3/2
sec θ = 3/2
The value of : 2 sec² θ + 2 tan² θ -7
= 2(3/2)² + 2(√5/2)² - 7
= 2 × 9/4 + 2 × 5/4 - 7
= (9/2 + 5/2) - 7
= (9 + 5)/2 - 7
= 14/2 - 7
= 7 - 7
= 0
2 sec² θ + 2 tan² θ -7 = 0
Hence, the value of 2 sec² θ + 2 tan² θ -7 is 0.
HOPE THIS ANSWER WILL HELP YOU...
Answer:
Option(B)
Step-by-step explanation:
Given, cosθ = (2/3).
We know that sinθ = √1 - (2/3)²
= √1 - 4/9
= √5/9
= (√5)/(3)
Then:
2 sec²θ + 2 tan² θ - 7
= 2 (1/cosθ)² + 2(sinθ/cosθ)² - 7
= 2(3/2)² + 2(√5/2)² - 7
= 2(9/4) + 2(5/4) - 7
= (9/2) + (5/2) - 7
= (-14 + 9 + 5)/2
= 0.
Hope it helps!