Math, asked by BrainlyHelper, 1 year ago

If cos\Theta=\frac{3}{4}, then find the value of 9tan²θ+ 9.

Answers

Answered by nikitasingh79
8

Answer:

The value of 9tan²θ + 9  is 16.

Step-by-step explanation:

Given : cosθ = 3/4

secθ = 1/cosθ

secθ = 1/(3/4) = 1 × (4/3) = 4/3

By using the identity , sec² θ -  tan²θ = 1

(4/3)² - tan²θ = 1

16/9 - tan²θ = 1

tan²θ = 16/9 - 1  

tan²θ = (16 - 9)/9

tan²θ = 7/9

We have to find the value of, 9tan²θ + 9 :  

9tan²θ + 9  

= 9 (7/9)+ 9

= 7 + 9

= 16

Hence, the value of 9tan²θ + 9  is 16.

HOPE THIS ANSWER WILL HELP YOU…

Answered by BoyBrainly
5

 \fbox{ \bold{ \large{Given :- \:  \:  \:  }}}

 \to \:  \:  \bold{cos \: \Theta=\frac{3}{4} }

 \to Base = 3 units

 \to Hypotenuse = 4 units

 \to Perpendicular =  \bold{ \sqrt{ {(H) }^{2}  -  {(B)  }^{2} } } =  \bold{ \sqrt{ {(4)}^{2} -  {(3)}^{2}  } } =   \bold{\sqrt{7} \:  units }

 \\  \bold{ \fbox{ \large{To \:  Find :- \:  \:  \: }}}

 \to 9 × tan²θ + 9

\\   \bold{ \fbox{ \large{Solution :- \:  \:  \: }}}

 \to \bold{9 \times  {tan}^{2}  \bold{\theta + 9}}  \\  \\  \to \bold{9 \times  {( \frac{P }{B }) }^{2} } \bold{ + \:  9 }\\ \\ \to \bold{ 9 \times   {( \frac{ \sqrt{7} }{3} )}^{2}  + 9 }\\  \\  \to \bold{9 \times  \frac{7}{9}  + 9} \\  \\ \to  \:  \:  \:  \:  \:  \:   \bold{ 16 \: }

Hence , 16 is The Required Value


mysticd: plz , check it again
Similar questions