Math, asked by jishnu172004, 10 months ago

If
cosa +  {cos}^{2} a = 1
then the value of
 {sin}^{2} a +  {sin}^{4} a
is
(A) -1. (B) 0 (C) 1 (D) 2​

Answers

Answered by sunita4831
0

Step-by-step explanation:

Mark as brainliest

follow me

all the best :)

Attachments:
Answered by Anonymous
43

\huge\star\frak{\underline{AnSwer:-}}

ɢɪɴ :

\star \normalsize\sf \red{cosa + cos^2 = 1}

ғɪɴ :

\star \normalsize\sf \purple{sin^2a + sin^4a}

sʟɪɴ:

\normalsize\hookrightarrow\sf\ cosa + cos^2 = 1  \\ \\ \normalsize\hookrightarrow\sf\ cosa = 1- cos^2a

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ 1 -cos^2\theta  =  sin^2\theta}) }

\normalsize\sf\hookrightarrow\ cosa = sin^2a

 \rule{100}2

\normalsize\sf\hookrightarrow\ sin^2a + sin^4a \\ \\ \normalsize\sf\hookrightarrow\ sin^2a(1+sin^4a)

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ put \: the \:  value \: of \: sin^2a}) }

\normalsize\hookrightarrow\sf\ cosa(1+cosa) \\ \\ \normalsize\hookrightarrow\sf\  cosa + cos^2a=1  \\ \\ \normalsize\hookrightarrow\sf\ sin^2a + sin^4a = 1

\hookrightarrow{\underline{\boxed{\sf\orange{sin^2a + sin^4a = 1}}}}

\huge\star\frak{\underline{Some \: Important :-}}

\boxed{\begin{minipage}{6cm} Important  Trigonometric identities :- \\ \\ $\: \: 1)\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\cos^2\theta=1-\sin^2\theta \\ \\ 4)1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5) \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\sec^2\theta=1+\tan^2\theta \\ \\ 8)\sec^2\theta-\tan^2\thetha=1 \\ \\ 9)\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions