Math, asked by Anonymous, 6 months ago

If cosA+sinA = \sqrt{2} cosA.
Show that cosA-sinA=\sqrt{2} sinA

Answers

Answered by abhi569
2

Step-by-step explanation:

Square on both sides,

=> (cosA + sinA)² = (√2 cosA)²

=> cos²A + sin²A + 2cosA.sinA = 2cos²A

=> 2cosA.sinA = 2cos²A - cos²A - sin²A

=> 2cosA.sinA = cos²A - sin²A

=> 2cosAsinA= (cosA + sinA)(cosA - sinA)

=> 2cosAsinA = (√2 cosA )(cosA - sinA)

=> 2cosAsinA/√2cosA = cosA - sinA

=> √2 sinA = cosA - sinA

Similar questions