Math, asked by SharmaShivam, 1 year ago

If cosec\theta-sin\theta=l and sec\theta-cos\theta=m
Show that
l^2m^2(l^2+m^2+3)=1


abhi569: @shivam hello dear!!! plz... help me in this question
https://brainly.in/question/7760824

Answers

Answered by Anonymous
22

Given

cosec θ - sin θ = l

sec θ - cos θ = m


Formulas to use :

  • cos² θ = 1 - sin²θ
  • sin² θ = 1 - cos²θ
  • cot²θ = cos²θ/sin²θ
  • tan²θ = sin²θ/cos²θ

l² = ( cosec  θ - sin  θ )²

= > l² = cosec²  θ + sin² θ - 2 sin  θ cosec  θ

We know that sin  θ cosec  θ = 1

So : l² = cosec²  θ + sin²  θ -  2

cosec²  θ - 1 = cot²  θ

sin²  θ - 1 = - cos²  θ

= > l² = cot²  θ - cos²  θ

= > l² = cos²  θ / sin²  θ - cos²  θ

= > l² = ( cos²  θ - cos²sin² ) / sin²  θ

= > l² = cos²  θ  ( 1 - sin²  θ ) / sin²  θ

= > l² = cos²  θ × cos²  θ / sin²  θ

= > l² = cos⁴  θ / sin²  θ .............( 1 )


m² = ( sec  θ - cos  θ )²

= > m² = sec²  θ + cos² θ - 2 cos  θ sec  θ

We know that sec θ cos  θ = 1

So : m² = sec²  θ + cos²  θ -  2

sec²  θ - 1 = tan²  θ

cos²  θ - 1 = - sin²  θ

= > m² = tan²  θ - sin²  θ

= > m² = sin²  θ / cos²  θ - sin²  θ

= > m² = sin²  θ  ( 1 - cos²  θ ) / cos²  θ

= > m² = sin²  θ × sin²  θ /cos²  θ

= > m² = sin⁴  θ / cos²  θ .............( 2 )


From ( 1 ) and ( 2 ) put the values now :


l² m² ( l² + m² + 3 )


= >( cos⁴ θ / sin² θ )( sin⁴θ / cos² θ) [ cos⁴ θ / sin² θ + sin⁴θ / cos²θ + 3 ]

= > ( cos⁴ θ sin⁴ θ ) /  ( cos² θ sin² θ ) [ cos⁶ θ + sin⁶ θ + 3 sin²θ cos²θ ] / ( sin² θ cos² θ )

= > cos² θ . sin² θ [ ( cos² θ )³ + ( sin² θ )³ + 3 sin² θ cos² θ ] / sin²θ cos²θ

= > [ ( cos² θ )³ + ( sin² θ )³ + 3 sin² θ cos² θ ]


Use the formula a³ + b³ = ( a + b )( a² - ab + b² )

= > ( cos² θ + sin² θ )( sin²θ -  sin θ + cos² θ ) + 3 sinθ cos θ


Use sin²θ + cos²θ = 1

= > sin² θ + cos² θ + 2 sinθ cos θ


Use the expansion of a² + b² + 2 ab as ( a + b )²

= > ( sin ² θ + cos ² θ )²


We know that sin² θ + cos² θ = 1


= > 1²

= > 1 [ PROVED ]


yahootak: fabulous answer
Anonymous: thanka :-)
Swarnimkumar22: Perfect
Anonymous: thanks :)
Answered by wwwseenalingampalli
0

Answer:

mark me as a brainlistanswer

Attachments:
Similar questions