If and
Show that
Answers
Given
cosec θ - sin θ = l
sec θ - cos θ = m
Formulas to use :
- cos² θ = 1 - sin²θ
- sin² θ = 1 - cos²θ
- cot²θ = cos²θ/sin²θ
- tan²θ = sin²θ/cos²θ
l² = ( cosec θ - sin θ )²
= > l² = cosec² θ + sin² θ - 2 sin θ cosec θ
We know that sin θ cosec θ = 1
So : l² = cosec² θ + sin² θ - 2
cosec² θ - 1 = cot² θ
sin² θ - 1 = - cos² θ
= > l² = cot² θ - cos² θ
= > l² = cos² θ / sin² θ - cos² θ
= > l² = ( cos² θ - cos²sin² ) / sin² θ
= > l² = cos² θ ( 1 - sin² θ ) / sin² θ
= > l² = cos² θ × cos² θ / sin² θ
= > l² = cos⁴ θ / sin² θ .............( 1 )
m² = ( sec θ - cos θ )²
= > m² = sec² θ + cos² θ - 2 cos θ sec θ
We know that sec θ cos θ = 1
So : m² = sec² θ + cos² θ - 2
sec² θ - 1 = tan² θ
cos² θ - 1 = - sin² θ
= > m² = tan² θ - sin² θ
= > m² = sin² θ / cos² θ - sin² θ
= > m² = sin² θ ( 1 - cos² θ ) / cos² θ
= > m² = sin² θ × sin² θ /cos² θ
= > m² = sin⁴ θ / cos² θ .............( 2 )
From ( 1 ) and ( 2 ) put the values now :
l² m² ( l² + m² + 3 )
= >( cos⁴ θ / sin² θ )( sin⁴θ / cos² θ) [ cos⁴ θ / sin² θ + sin⁴θ / cos²θ + 3 ]
= > ( cos⁴ θ sin⁴ θ ) / ( cos² θ sin² θ ) [ cos⁶ θ + sin⁶ θ + 3 sin²θ cos²θ ] / ( sin² θ cos² θ )
= > cos² θ . sin² θ [ ( cos² θ )³ + ( sin² θ )³ + 3 sin² θ cos² θ ] / sin²θ cos²θ
= > [ ( cos² θ )³ + ( sin² θ )³ + 3 sin² θ cos² θ ]
Use the formula a³ + b³ = ( a + b )( a² - ab + b² )
= > ( cos² θ + sin² θ )( sin²θ - sin θ + cos² θ ) + 3 sinθ cos θ
Use sin²θ + cos²θ = 1
= > sin² θ + cos² θ + 2 sinθ cos θ
Use the expansion of a² + b² + 2 ab as ( a + b )²
= > ( sin ² θ + cos ² θ )²
We know that sin² θ + cos² θ = 1
= > 1²
= > 1 [ PROVED ]
Answer:
mark me as a brainlistanswer
https://brainly.in/question/7760824