Math, asked by BrainlyHelper, 1 year ago

If cot\Theta=\frac{1}{\sqrt{3} }, show that \frac{1-cosx^{2}\Theta }{2-sinx^{2}\Theta } =\frac{3}{5}.

Answers

Answered by nikitasingh79
0

SOLUTION :  

Given: cot θ = 1/√3

cot θ = 1/√3 = B/P = AB /BC

Draw a right ∆ABC, ∠B = 90°

Base(AB) = 1 unit & Perpendicular(BC) = √3 unit

In ∆ABC,  

AC² = AB² + BC²

[By using Pythagoras theorem]

AC² = 1² + (√3)²

AC² = 1 + 3

AC² = 4

AC =√4

AC = 2  

Now, sin θ = P/H = BC /AC = √3/2

Cos θ = B/H = AB/AC = ½

L.H.S  = 1- cos²θ / 2 - sin²θ  

= 1 -(½)² / 2 - (√3/2)²

= 1 - ¼ / 2 -¾

=( 4 -1)/4 / (8 - 3)/4

= ¾ / 5/4

= ⅗  

= R.H.S

Hence ,  1- cos²θ / 2 - sin²θ = ⅗

HOPE THIS ANSWER WILL HELP YOU….


Attachments:
Answered by shashankavsthi
0

in \:right \: triangle \: abc \:  \\ by \: pythagorous \: theoram \\  \\    {(ac)}^{2} = {(ab)}^{2}  +  {(bc)}^{2}  \\ hypotenuse =  \sqrt{ { (\sqrt{3}) }^{2}  +  {(1)}^{2} }  \\ hypotenuse = 2
Now,

 \sin(θ)  =  \frac{ \sqrt{3} }{2}  \\  \cos(θ)  =  \frac{1}{2}  \\ now \: according \: to \: question \\  \\  =  \frac{1 -  {cos}^{2} θ}{2 -  {sin}^{2} θ}  \\  =  \frac{1 -  ({ \frac{1}{2} )}^{2} }{2 -  {( \frac{ \sqrt{3} }{2} )}^{2} }  \\  =  \frac{1 - \frac{1}{4}  }{2 -  \frac{3}{4} }  \\  =  \frac{ \frac{3}{4} }{ \frac{5}{4} }  \\  = \frac{3}{5}  = rhs
L.H.S=R.H.S

Hence proved✔️
Attachments:
Similar questions