Math, asked by SparklingBoy, 10 hours ago

If
 \displaystyle\int\limits^{\pi/3}_0 { \frac{ \tan \theta}{ \sqrt{2k \sec \theta} } }   \:  d \theta = 1 -  \frac{1}{ \sqrt{2} } ,(k > 0) \\
Then Find the value of k

❒ Only proper LaTex Answered will be marked As Brainliest.

❒ Don't Spam

Answers

Answered by Atlas99
45

\texttt{\textsf{\huge{\underline{★Given}:}}}

 \displaystyle\int\limits^{\ \frac{\pi}{3} }_0 { \frac{ \tan \theta}{ \sqrt{2k \sec \theta} } } \: d \theta = 1 - \frac{1}{ \sqrt{2} } ,(k > 0) \\

_____________________________

\texttt{\textsf{\huge{\underline{★To Find}:}}}

\texttt{\textsf{☼︎The  \: value \: of \: k}}

___________________________

\texttt{\textsf{\huge{\underline{Solution}:}}}

LHS =  \frac{1}{ \sqrt{2k} }   \displaystyle \int\limits_{0}^{ \frac{\pi}{3} }</p><p>\:   \:  \frac{tanθ}{ \sqrt{secθ} } \:  \:  dθ

 = \frac{1}{ \sqrt{2k} }   \displaystyle \int\limits_{0}^{ \frac{\pi}{3} }</p><p>\:   \:  \frac{sinθ}{ \sqrt{cosθ} } \:  \:  dθ

 =  \frac{ - 1}{ \sqrt{2k} } ∣2 \sqrt{cosθ} | \: 0 \:  \frac{\pi}{3} </p><p></p><p>

 =  -  \frac{ \sqrt{2} }{ \sqrt{k} } ( \frac{1}{ \sqrt{2} }  - 1) \\

 =  \frac{ \sqrt{2} }{ \sqrt{k} } ( 1 -  \frac{1}{ \sqrt{2} } ) \\

RHS = 1 -  \frac{1}{ \sqrt{2} }  \\

  ∴ \: \: k = 2

___________________________

Answered by IxIitzurshizukaIxI
9

Answer

\texttt{\textsf{\huge{\underline{★Given}:}}}

\begin{gathered} \displaystyle\int\limits^{\ \frac{\pi}{3} }_0 { \frac{ \tan \theta}{ \sqrt{2k \sec \theta} } } \: d \theta = 1 - \frac{1}{ \sqrt{2} } ,(k &gt; 0) \\ \end{gathered}0∫ 3π2ksecθtanθdθ=1−21,(k&gt;0)

__________________________

\texttt{\textsf{\huge{\underline{★To Find}:}}}

\texttt{\textsf{☼︎The \: value \: of \: k}}

___________________________

\texttt{\textsf{\huge{\underline{Solution}:}}}

LHS = \frac{1}{ \sqrt{2k} } \displaystyle \int\limits_{0}^{ \frac{\pi}{3} } &lt; /p &gt; &lt; p &gt; \: \: \frac{tanθ}{ \sqrt{secθ} } \: \: dθLHS=2k10∫3π&lt;/p&gt;&lt;p&gt;secθtanθdθ

= \frac{1}{ \sqrt{2k} } \displaystyle \int\limits_{0}^{ \frac{\pi}{3} } &lt; /p &gt; &lt; p &gt; \: \: \frac{sinθ}{ \sqrt{cosθ} } \: \: dθ=2k10∫3π&lt;/p&gt;&lt;p&gt;cosθsinθdθ

= \frac{ - 1}{ \sqrt{2k} } ∣2 \sqrt{cosθ} | \: 0 \: \frac{\pi}{3} &lt; /p &gt; &lt; p &gt; &lt; /p &gt; &lt; p &gt;=2k−1∣2cosθ∣03π&lt;/p&gt;&lt;p&gt;&lt;/p&gt;&lt;p&gt;

\begin{gathered} = - \frac{ \sqrt{2} }{ \sqrt{k} } ( \frac{1}{ \sqrt{2} } - 1) \\ \end{gathered}=−k2(21−1)

</p><p>\begin{gathered} = \frac{ \sqrt{2} }{ \sqrt{k} } ( 1 - \frac{1}{ \sqrt{2} } ) \\ \end{gathered}=k2(1−21)</p><p>\begin{gathered}RHS = 1 - \frac{1}{ \sqrt{2} } \\ \end{gathered}RHS=1−21

∴ \: \: k = 2∴k=2

___________________________

Similar questions