Math, asked by Sriddhi577, 2 months ago

If \displaystyle{\sf\:17\:\sin\:\theta\:=\:8}

Then Find cos theta =? ​

Answers

Answered by Anonymous
48

Given :-

  • \displaystyle{\sf\:17\:\sin\:\theta\:=\:8}

We have to find the value of \sf cos\:\theta

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

\displaystyle{\sf\:17\:\sin\:\theta\:=\:8}

:\displaystyle{\implies\sf\:\sin\:\theta\:=\:\dfrac{8}{17}}

We know that:-

\displaystyle{\red{\sf\:\sin^2\:\theta\:+\:\cos^2\:\theta\:=\:1}\sf\:\:\:-\:-\:-\:[\:Trigonometric\:identity\:]}

\displaystyle{\implies\sf\:\cos^2\:\theta\:=\:1\:-\:\sin^2\:\theta}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{1\:-\:\sin^2\:\theta}\:\:\:-\:-\:-\:[\:Taking\:square\:roots\:]}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{1\:-\:\left(\:\dfrac{8}{17}\:\right)^2}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{1\:-\:\dfrac{8^2}{(\:17\:)^2}}\:\:\:\:-\:-\:-\:\left[\:\because\:\left(\:\dfrac{a}{b}\:\right)^m\:=\:\dfrac{a^m}{b^m}\:\right]}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{1\:-\:\dfrac{64}{289}}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{\dfrac{289\:-\:64}{289}}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{\dfrac{225}{289}}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\sqrt{\dfrac{15\:\times\:15}{17\:\times\:17}}}

\displaystyle{\implies\boxed{\red{\sf\:\cos\:\theta\:=\:\dfrac{15}{17}}}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

Similar questions